PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MicroRNA expression differentiates histology and predicts survival of lung cancer 
Purpose
The molecular drivers that determine histology in lung cancer are largely unknown. We investigated whether microRNA (miR) expression profiles can differentiate histological subtypes and predict survival for non-small cell lung cancer.
Experimental design
We analyzed miR expression in 165 adenocarcinoma (AD) and 125 squamous cell carcinoma (SQ) tissue samples from the Environmental And Genetics in Lung cancer Etiology (EAGLE) study using a custom oligo array with 440 human mature antisense miRs. We compared miR expression profiles using t-tests and F-tests and accounted for multiple testing using global permutation tests. We assessed the association of miR expression with tobacco smoking using Spearman correlation coefficients and linear regression models, and with clinical outcome using log-rank tests, Cox proportional hazards and survival risk prediction models, accounting for demographic and tumor characteristics.
Results
MiR expression profiles strongly differed between AD and SQ (global p<0.0001), particularly in the early stages, and included miRs located on chromosome loci most often altered in lung cancer (e.g., 3p21-22). Most miRs, including all members of the let-7 family, were down-regulated in SQ. Major findings were confirmed by QRT-PCR in EAGLE samples and in an independent set of lung cancer cases. In SQ, low expression of miRs down-regulated in the histology comparison was associated with 1.2 to 3.6-fold increased mortality risk. A 5-miR signature significantly predicted survival for SQ.
Conclusions
We identified a miR expression profile that strongly differentiated AD from SQ and had prognostic implications. These findings may lead to histology-based therapeutic approaches.
doi:10.1158/1078-0432.CCR-09-1736
PMCID: PMC3163170  PMID: 20068076
2.  Cancer incidence in the population exposed to dioxin after the "Seveso accident": twenty years of follow-up 
Environmental Health  2009;8:39.
Background
The Seveso, Italy accident in 1976 caused the contamination of a large population by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Possible long-term effects have been examined through mortality and cancer incidence studies. We have updated the cancer incidence study which now covers the period 1977-96.
Methods
The study population includes subjects resident at the time of the accident in three contaminated zones with decreasing TCDD soil levels (zone A, very high; zone B, high; zone R, low) and in a surrounding non-contaminated reference territory. Gender-, age-, and period-adjusted rate ratios (RR) and 95% confidence intervals (95% CI) were calculated by using Poisson regression for subjects aged 0-74 years.
Results
All cancer incidence did not differ from expectations in any of the contaminated zones. An excess of lymphatic and hematopoietic tissue neoplasms was observed in zones A (four cases; RR, 1.39; 95% CI, 0.52-3.71) and B (29 cases; RR, 1.56; 95% CI, 1.07-2.27) consistent with the findings of the concurrent mortality study. An increased risk of breast cancer was detected in zone A females after 15 years since the accident (five cases, RR, 2.57; 95% CI, 1.07-6.20). No cases of soft tissue sarcomas occurred in the most exposed zones (A and B, 1.17 expected). No cancer cases were observed among subjects diagnosed with chloracne early after the accident.
Conclusion
The extension of the Seveso cancer incidence study confirmed an excess risk of lymphatic and hematopoietic tissue neoplasms in the most exposed zones. No clear pattern by time since the accident and zones was evident partly because of the low number of cases. The elevated risk of breast cancer in zone A females after 15 years since the accident deserves further and thorough investigation. The follow-up is continuing in order to cover the long time period (even decades) usually elapsing from exposure to carcinogenic chemicals and disease occurrence.
doi:10.1186/1476-069X-8-39
PMCID: PMC2754980  PMID: 19754930
3.  Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer 
BMC Public Health  2008;8:203.
Background
Lung cancer is the leading cause of cancer mortality worldwide. Tobacco smoking is its primary cause, and yet the precise molecular alterations induced by smoking in lung tissue that lead to lung cancer and impact survival have remained obscure. A new framework of research is needed to address the challenges offered by this complex disease.
Methods/Design
We designed a large population-based case-control study that combines a traditional molecular epidemiology design with a more integrative approach to investigate the dynamic process that begins with smoking initiation, proceeds through dependency/smoking persistence, continues with lung cancer development and ends with progression to disseminated disease or response to therapy and survival. The study allows the integration of data from multiple sources in the same subjects (risk factors, germline variation, genomic alterations in tumors, and clinical endpoints) to tackle the disease etiology from different angles. Before beginning the study, we conducted a phone survey and pilot investigations to identify the best approach to ensure an acceptable participation in the study from cases and controls. Between 2002 and 2005, we enrolled 2101 incident primary lung cancer cases and 2120 population controls, with 86.6% and 72.4% participation rate, respectively, from a catchment area including 216 municipalities in the Lombardy region of Italy. Lung cancer cases were enrolled in 13 hospitals and population controls were randomly sampled from the area to match the cases by age, gender and residence. Detailed epidemiological information and biospecimens were collected from each participant, and clinical data and tissue specimens from the cases. Collection of follow-up data on treatment and survival is ongoing.
Discussion
EAGLE is a new population-based case-control study that explores the full spectrum of lung cancer etiology, from smoking addiction to lung cancer outcome, through examination of epidemiological, molecular, and clinical data. We have provided a detailed description of the study design, field activities, management, and opportunities for research following this integrative approach, which allows a sharper and more comprehensive vision of the complex nature of this disease. The study is poised to accelerate the emergence of new preventive and therapeutic strategies with potentially enormous impact on public health.
doi:10.1186/1471-2458-8-203
PMCID: PMC2464602  PMID: 18538025

Results 1-3 (3)