Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells 
Journal of Applied Toxicology  2014;35(1):59-67.
Cardiovascular disease risk has been consistently linked with particulate matter (PM) exposure. Cell-derived microvesicles (MVs) are released into plasma and transfer microRNAs (miRNAs) between tissues. MVs can be produced by the respiratory system in response to proinflammatory triggers, enter the circulatory system and remotely modify gene expression in cardiovascular tissues. However, whether PM affects MV signaling has never been investigated. In this study, we evaluated expression of microRNAs contained within plasma MVs upon PM exposure both in vivo and in vitro. In the in vivo study, we isolated plasma MVs from healthy steel plant workers before and after workplace PM exposure. We measured the expression of 88 MV-associated miRNAs by real-time polymerase chain reaction. To assess a possible source of the MV miRNAs identified in vivo, we measured their miRNA expression in PM-treated A549 pulmonary cell lines in vitro. MiRNA profiling of plasma MVs showed 5.62- and 13.95-fold increased expression of miR-128 and miR-302c, respectively, after 3 days of workplace PM exposure (P < 0.001). According to Ingenuity Pathway Analysis, miR-128 is part of coronary artery disease pathways, and miR-302c is part of coronary artery disease, cardiac hypertrophy and heart failure pathways. In vitro experiments confirmed a dose-dependent expression of miR-128 in MVs released from A549 cells after 6 h of PM treatment (P = 0.030). MiR-302c was expressed neither from A549 cells nor in reference lung RNA. These results suggest novel PM-activated molecular mechanisms that may mediate the effects of air pollution and could lead to the identification of new diagnostic and therapeutic interventions. Copyright © 2014 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd.
Cell-derived microvesicles (MVs) are found in plasma and may transfer signals between tissues. In this article, we report in-vivo and in-vitro studies demonstrating that Particulate Matter (PM) affects systemic MV signaling by inducing MV release from alveolar cells into plasma. In-vivo microRNA screening showed increased miR-128 level in plasma MVs after PM exposure. In-vitro experiments confirmed PM-induced release of miR-128 in MVs from A549 alveolar cells. Future studies are warranted to determine the roles of MVs in mediating PM effects.
PMCID: PMC4125569  PMID: 24515752
Particulate matter; microRNAs; microvesicles; steel plant workers; A549 cells
4.  Heme-related gene expression signatures of meat intakes in lung cancer tissues 
Molecular carcinogenesis  2013;53(7):548-556.
Lung cancer causes more deaths worldwide than any other cancer. In addition to cigarette smoking, dietary factors may contribute to lung carcinogenesis. Epidemiologic studies, including the Environment and Genetics in Lung cancer Etiology (EAGLE), have reported increased consumption of red/processed meats to be associated with higher risk of lung cancer. Heme-iron toxicity may link meat intake with cancer. We investigated this hypothesis in meat-related lung carcinogenesis using whole genome expression.
We measured genome-wide expression (HG-U133A) in 49 tumor and 42 non-involved fresh frozen lung tissues of 64 adenocarcinoma EAGLE patients. We studied gene expression profiles by high-versus-low meat consumption, with and without adjustment by sex, age, and smoking. Threshold for significance was a False Discovery Rate (FDR) ≤0.15. We studied whether the identified genes played a role in heme-iron related processes by means of manually curated literature search and gene ontology-based pathway analysis.
We found that gene expression of 232 annotated genes in tumor tissue significantly distinguished lung adenocarcinoma cases who consumed above/below the median intake of fresh red meats (FDR=0.12). Sixty-three (~28%) of the 232 identified genes (12 expected by chance, p-value<0.001) were involved in heme binding, absorption, transport, and Wnt signaling pathway (e.g., CYPs, TPO, HPX, HFE, SLCs, WNTs). We also identified several genes involved in lipid metabolism (e.g., NCR1, TNF, UCP3) and oxidative stress (e.g., TPO, SGK2, MTHFR) that may be indirectly related to heme-toxicity.
The study’s results provide preliminary evidence that heme-iron toxicity might be one underlying mechanism linking fresh red meat intake and lung cancer.
PMCID: PMC4152901  PMID: 23681825
5.  Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue 
Nature communications  2014;5:3365.
The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome.
PMCID: PMC3982882  PMID: 24572595
6.  Are Women Who Smoke at Higher Risk for Lung Cancer Than Men Who Smoke? 
American Journal of Epidemiology  2013;177(7):601-612.
Worldwide lung cancer incidence is decreasing or leveling off among men, but rising among women. Sex differences in associations of tobacco carcinogens with lung cancer risk have been hypothesized, but the epidemiologic evidence is conflicting. We tested sex-smoking interaction in association with lung cancer risk within a population-based case-control study, the Environment and Genetics in Lung Cancer Etiology (EAGLE) Study (Lombardy, Italy, 2002–2005). Detailed lifetime smoking histories were collected by personal interview in 2,100 cases with incident lung cancer and 2,120 controls. Odds ratios and 95% confidence intervals for pack-years of cigarette smoking were estimated by logistic regression, adjusted for age, residence area, and time since quitting smoking. To assess sex-smoking interaction, we compared the slopes of odds ratios for logarithm of pack-years in a model for men and women combined. Overall, the slope for pack-years was steeper in men (odds ratio for female-smoking interaction = 0.39, 95% confidence interval: 0.24, 0.62; P < 0.0001); after restriction to ever smokers, the difference in slopes was much smaller (odds ratio for interaction = 0.63, 95% confidence interval: 0.29, 1.37; P = 0.24). Similar results were found by histological type. Results were unchanged when additional confounders were evaluated (e.g., tobacco type, inhalation depth, Fagerström-assessed nicotine dependence). These findings do not support a higher female susceptibility to tobacco-related lung cancer.
PMCID: PMC3657535  PMID: 23425629
case-control studies; lung cancer; sex differences; smoking
Pain  2013;154(9):1769-1777.
To explore definitions for multi-site pain, and compare associations with risk factors for different patterns of musculoskeletal pain, we analysed cross-sectional data from the Cultural and Psychosocial Influences on Disability (CUPID) study. The study sample comprised 12,410 adults aged 20-59 years from 47 occupational groups in 18 countries. A standardised questionnaire was used to collect information about pain in the past month at each of 10 anatomical sites, and about potential risk factors. Associations with pain outcomes were assessed by Poisson regression, and characterised by prevalence rate ratios (PRRs). Extensive pain, affecting 6-10 anatomical sites, was reported much more frequently than would be expected if the occurrence of pain at each site were independent (674 participants v 41.9 expected). In comparison with pain involving only 1-3 sites, it showed much stronger associations (relative to no pain) with risk factors such as female sex (PRR 1.6 v 1.1), older age (PRR 2.6 v 1.1), somatising tendency (PRR 4.6 v 1.3) and exposure to multiple physically stressing occupational activities (PRR 5.0 v 1.4). After adjustment for number of sites with pain, these risk factors showed no additional association with a distribution of pain that was widespread according to the frequently used American College of Rheumatology (ACR) criteria. Our analysis supports the classification of pain at multiple anatomical sites simply by the number of sites affected, and suggests that extensive pain differs importantly in its associations with risk factors from pain that is limited to only a small number of anatomical sites.
PMCID: PMC3747979  PMID: 23727463
9.  Patterns of multisite pain and associations with risk factors 
Pain  2013;154(9):1769-1777.
In a large cross-sectional survey, pain affecting 6–10 anatomical sites showed substantially different associations with risk factors from pain limited to 1–3 sites.
To explore definitions for multisite pain, and compare associations with risk factors for different patterns of musculoskeletal pain, we analysed cross-sectional data from the Cultural and Psychosocial Influences on Disability (CUPID) study. The study sample comprised 12,410 adults aged 20–59 years from 47 occupational groups in 18 countries. A standardised questionnaire was used to collect information about pain in the past month at each of 10 anatomical sites, and about potential risk factors. Associations with pain outcomes were assessed by Poisson regression, and characterised by prevalence rate ratios (PRRs). Extensive pain, affecting 6–10 anatomical sites, was reported much more frequently than would be expected if the occurrence of pain at each site were independent (674 participants vs 41.9 expected). In comparison with pain involving only 1–3 sites, it showed much stronger associations (relative to no pain) with risk factors such as female sex (PRR 1.6 vs 1.1), older age (PRR 2.6 vs 1.1), somatising tendency (PRR 4.6 vs 1.3), and exposure to multiple physically stressing occupational activities (PRR 5.0 vs 1.4). After adjustment for number of sites with pain, these risk factors showed no additional association with a distribution of pain that was widespread according to the frequently used American College of Rheumatology criteria. Our analysis supports the classification of pain at multiple anatomical sites simply by the number of sites affected, and suggests that extensive pain differs importantly in its associations with risk factors from pain that is limited to only a small number of anatomical sites.
PMCID: PMC3747979  PMID: 23727463
Pain; Multisite; Widespread; Definition; Risk factors
10.  Impact of occupational carcinogens on lung cancer risk in a general population 
Background Exposure to occupational carcinogens is an important preventable cause of lung cancer. Most of the previous studies were in highly exposed industrial cohorts. Our aim was to quantify lung cancer burden attributable to occupational carcinogens in a general population.
Methods We applied a new job–exposure matrix (JEM) to translate lifetime work histories, collected by personal interview and coded into standard job titles, into never, low and high exposure levels for six known/suspected occupational lung carcinogens in the Environment and Genetics in Lung cancer Etiology (EAGLE) population-based case–control study, conducted in Lombardy region, Italy, in 2002–05. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated in men (1537 cases and 1617 controls), by logistic regression adjusted for potential confounders, including smoking and co-exposure to JEM carcinogens. The population attributable fraction (PAF) was estimated as impact measure.
Results Men showed an increased lung cancer risk even at low exposure to asbestos (OR: 1.76; 95% CI: 1.42–2.18), crystalline silica (OR: 1.31; 95% CI: 1.00–1.71) and nickel–chromium (OR: 1.18; 95% CI: 0.90–1.53); risk increased with exposure level. For polycyclic aromatic hydrocarbons, an increased risk (OR: 1.64; 95% CI: 0.99–2.70) was found only for high exposures. The PAFs for any exposure to asbestos, silica and nickel–chromium were 18.1, 5.7 and 7.0%, respectively, equivalent to an overall PAF of 22.5% (95% CI: 14.1–30.0). This corresponds to about 1016 (95% CI: 637–1355) male lung cancer cases/year in Lombardy.
Conclusions These findings support the substantial role of selected occupational carcinogens on lung cancer burden, even at low exposures, in a general population.
PMCID: PMC3396321  PMID: 22467291
lung neoplasms; case–control study; carcinogens; occupational health
11.  Disabling musculoskeletal pain in working populations: Is it the job, the person, or the culture? 
Pain  2013;154(6):856-863.
Large international variation in the prevalence of disabling forearm and low back pain was only partially explained by established personal and socioeconomic risk factors.
To compare the prevalence of disabling low back pain (DLBP) and disabling wrist/hand pain (DWHP) among groups of workers carrying out similar physical activities in different cultural environments, and to explore explanations for observed differences, we conducted a cross-sectional survey in 18 countries. Standardised questionnaires were used to ascertain pain that interfered with everyday activities and exposure to possible risk factors in 12,426 participants from 47 occupational groups (mostly nurses and office workers). Associations with risk factors were assessed by Poisson regression. The 1-month prevalence of DLBP in nurses varied from 9.6% to 42.6%, and that of DWHP in office workers from 2.2% to 31.6%. Rates of disabling pain at the 2 anatomical sites covaried (r = 0.76), but DLBP tended to be relatively more common in nurses and DWHP in office workers. Established risk factors such as occupational physical activities, psychosocial aspects of work, and tendency to somatise were confirmed, and associations were found also with adverse health beliefs and group awareness of people outside work with musculoskeletal pain. However, after allowance for these risk factors, an up-to 8-fold difference in prevalence remained. Systems of compensation for work-related illness and financial support for health-related incapacity for work appeared to have little influence on the occurrence of symptoms. Our findings indicate large international variation in the prevalence of disabling forearm and back pain among occupational groups carrying out similar tasks, which is only partially explained by the personal and socioeconomic risk factors that were analysed.
PMCID: PMC3675684  PMID: 23688828
Low back; Forearm; Pain; International; Socioeconomic; Psychosocial
12.  Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis 
Background Estimates of global DNA methylation from repetitive DNA elements, such as Alu and LINE-1, have been increasingly used in epidemiological investigations because of their relative low-cost, high-throughput and quantitative results. Nevertheless, determinants of these methylation measures in healthy individuals are still largely unknown. The aim of this study was to examine whether age, gender, smoking habits, alcohol drinking and body mass index (BMI) are associated with Alu or LINE-1 methylation levels in blood leucocyte DNA of healthy individuals.
Methods Individual data from five studies including a total of 1465 healthy subjects were combined. DNA methylation was quantified by PCR-pyrosequencing.
Results Age [β = −0.011% of 5-methyl-cytosine (%5mC)/year, 95% confidence interval (CI) −0.020 to −0.001%5mC/year] and alcohol drinking (β = −0.214, 95% CI −0.415 to −0.013) were inversely associated with Alu methylation. Compared with females, males had lower Alu methylation (β = −0.385, 95% CI −0.665 to −0.104) and higher LINE-1 methylation (β = 0.796, 95% CI 0.261 to 1.330). No associations were found with smoking or BMI. Percent neutrophils and lymphocytes in blood counts exhibited a positive (β = 0.036, 95% CI 0.010 to 0.061) and negative (β = −0.038, 95% CI −0.065 to −0.012) association with LINE-1 methylation, respectively.
Conclusions Global methylation measures in blood DNA vary in relation with certain host and lifestyle characteristics, including age, gender, alcohol drinking and white blood cell counts. These findings need to be considered in designing epidemiological investigations aimed at identifying associations between DNA methylation and health outcomes.
PMCID: PMC3304518  PMID: 20846947
Blood; DNA methylation; epigenetics; meta-analysis; repetitive elements
13.  Correction: The CUPID (Cultural and Psychosocial Influences on Disability) Study: Methods of Data Collection and Characteristics of Study Sample 
PLoS ONE  2012;7(10):10.1371/annotation/3faf76e5-f73e-427f-9d60-8f94939b0f7e.
PMCID: PMC3491867
14.  A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma 
Affordable early screening in subjects with high risk of lung cancer has great potential to improve survival from this deadly disease. We measured gene expression from lung tissue and peripheral whole blood (PWB) from adenocarcinoma cases and controls to identify dysregulated lung cancer genes that could be tested in blood to improve identification of at-risk patients in the future. Genome-wide mRNA expression analysis was conducted in 153 subjects (73 adenocarcinoma cases, 80 controls) from the Environment And Genetics in Lung cancer Etiology (EAGLE) study using PWB and paired snap-frozen tumor and non-involved lung tissue samples. Analyses were conducted using unpaired t-tests, linear mixed effects and ANOVA models. The area under the receiver operating characteristic curve (AUC) was computed to assess the predictive accuracy of the identified biomarkers. We identified 50 dysregulated genes in stage I adenocarcinoma versus control PWB samples (False Discovery Rate ≤0.1, fold change ≥1.5 or ≤0.66). Among them, eight (TGFBR3, RUNX3, TRGC2, TRGV9, TARP, ACP1, VCAN, and TSTA3) differentiated paired tumor versus non-involved lung tissue samples in stage I cases, suggesting a similar pattern of lung cancer-related changes in PWB and lung tissue. These results were confirmed in two independent gene expression analyses in a blood-based case-control study (n=212) and a tumor-non tumor paired tissue study (n=54). The eight genes discriminated patients with lung cancer from healthy controls with high accuracy (AUC=0.81, 95% CI=0.74–0.87). Our finding suggests the use of gene expression from PWB for the identification of early detection markers of lung cancer in the future.
PMCID: PMC3188352  PMID: 21742797
microarray gene expression; peripheral blood; lung cancer; stage I
15.  Mood Disorders and Risk of Lung Cancer in the EAGLE Case-Control Study and in the U.S. Veterans Affairs Inpatient Cohort 
PLoS ONE  2012;7(8):e42945.
Mood disorders may affect lung cancer risk. We evaluated this hypothesis in two large studies.
Methodology/Principal Findings
We examined 1,939 lung cancer cases and 2,102 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) case-control study conducted in Italy (2002–2005), and 82,945 inpatients with a lung cancer diagnosis and 3,586,299 person-years without a lung cancer diagnosis in the U.S. Veterans Affairs Inpatient Cohort (VA study), composed of veterans with a VA hospital admission (1969–1996). In EAGLE, we calculated odds ratios (ORs) and 95% confidence intervals (CI), with extensive adjustment for tobacco smoking and multiple lifestyle factors. In the VA study, we estimated lung cancer relative risks (RRs) and 95% CIs with time-dependent Poisson regression, adjusting for attained age, calendar year, hospital visits, time within the study, and related previous medical diagnoses. In EAGLE, we found decreased lung cancer risk in subjects with a personal history of mood disorders (OR: 0.59, 95% CI: 0.44–0.79, based on 121 lung cancer incident cases and 192 controls) and family history of mood disorders (OR: 0.62, 95% CI: 0.50–0.77, based on 223 lung cancer cases and 345 controls). The VA study analyses yielded similar results (RR: 0.74, 95% CI: 0.71–0.77, based on 2,304 incident lung cancer cases and 177,267 non-cancer person-years) in men with discharge diagnoses for mood disorders. History of mood disorders was associated with nicotine dependence, alcohol and substance use and psychometric scales of depressive and anxiety symptoms in controls for these studies.
The consistent finding of a relationship between mood disorders and lung cancer risk across two large studies calls for further research into the complex interplay of risk factors associated with these two widespread and debilitating diseases. Although we adjusted for smoking effects in EAGLE, residual confounding of the results by smoking cannot be ruled out.
PMCID: PMC3413657  PMID: 22880133
16.  Inherited variation at chromosome 12p13.33 including RAD52 influences squamous cell lung carcinoma risk 
Cancer Discovery  2011;2(2):131-139.
While lung cancer is largely caused by tobacco smoking, inherited genetic factors play a role in its etiology. Genome-wide association studies (GWAS) in Europeans have robustly demonstrated only three polymorphic variations influencing lung cancer risk. Tumor heterogeneity may have hampered the detection of association signal when all lung cancer subtypes were analyzed together. In a GWAS of 5,355 European smoking lung cancer cases and 4,344 smoking controls, we conducted a pathway-based analysis in lung cancer histologic subtypes with 19,082 SNPs mapping to 917 genes in the HuGE-defined “inflammation” pathway. We identified a susceptibility locus for squamous cell lung carcinoma (SQ) at 12p13.33 (RAD52, rs6489769), and replicated the association in three independent samples totaling 3,359 SQ cases and 9,100 controls (odds ratio=1.20, Pcombined=2.3×10−8).
The combination of pathway-based approaches and information on disease specific subtypes can improve the identification of cancer susceptibility loci in heterogeneous diseases.
PMCID: PMC3354721  PMID: 22585858
Lung cancer; histology; squamous cell carcinoma; pathway analysis; RAD52
17.  The CUPID (Cultural and Psychosocial Influences on Disability) Study: Methods of Data Collection and Characteristics of Study Sample 
PLoS ONE  2012;7(7):e39820.
The CUPID (Cultural and Psychosocial Influences on Disability) study was established to explore the hypothesis that common musculoskeletal disorders (MSDs) and associated disability are importantly influenced by culturally determined health beliefs and expectations. This paper describes the methods of data collection and various characteristics of the study sample.
Methods/Principal Findings
A standardised questionnaire covering musculoskeletal symptoms, disability and potential risk factors, was used to collect information from 47 samples of nurses, office workers, and other (mostly manual) workers in 18 countries from six continents. In addition, local investigators provided data on economic aspects of employment for each occupational group. Participation exceeded 80% in 33 of the 47 occupational groups, and after pre-specified exclusions, analysis was based on 12,426 subjects (92 to 1018 per occupational group). As expected, there was high usage of computer keyboards by office workers, while nurses had the highest prevalence of heavy manual lifting in all but one country. There was substantial heterogeneity between occupational groups in economic and psychosocial aspects of work; three- to five-fold variation in awareness of someone outside work with musculoskeletal pain; and more than ten-fold variation in the prevalence of adverse health beliefs about back and arm pain, and in awareness of terms such as “repetitive strain injury” (RSI).
The large differences in psychosocial risk factors (including knowledge and beliefs about MSDs) between occupational groups should allow the study hypothesis to be addressed effectively.
PMCID: PMC3391206  PMID: 22792189
18.  MicroRNA expression differentiates histology and predicts survival of lung cancer 
The molecular drivers that determine histology in lung cancer are largely unknown. We investigated whether microRNA (miR) expression profiles can differentiate histological subtypes and predict survival for non-small cell lung cancer.
Experimental design
We analyzed miR expression in 165 adenocarcinoma (AD) and 125 squamous cell carcinoma (SQ) tissue samples from the Environmental And Genetics in Lung cancer Etiology (EAGLE) study using a custom oligo array with 440 human mature antisense miRs. We compared miR expression profiles using t-tests and F-tests and accounted for multiple testing using global permutation tests. We assessed the association of miR expression with tobacco smoking using Spearman correlation coefficients and linear regression models, and with clinical outcome using log-rank tests, Cox proportional hazards and survival risk prediction models, accounting for demographic and tumor characteristics.
MiR expression profiles strongly differed between AD and SQ (global p<0.0001), particularly in the early stages, and included miRs located on chromosome loci most often altered in lung cancer (e.g., 3p21-22). Most miRs, including all members of the let-7 family, were down-regulated in SQ. Major findings were confirmed by QRT-PCR in EAGLE samples and in an independent set of lung cancer cases. In SQ, low expression of miRs down-regulated in the histology comparison was associated with 1.2 to 3.6-fold increased mortality risk. A 5-miR signature significantly predicted survival for SQ.
We identified a miR expression profile that strongly differentiated AD from SQ and had prognostic implications. These findings may lead to histology-based therapeutic approaches.
PMCID: PMC3163170  PMID: 20068076
19.  Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk 
Carcinogenesis  2009;31(4):634-642.
Epidemiological and mechanistic evidence on the association of quercetin-rich food intake with lung cancer risk and carcinogenesis are inconclusive. We investigated the role of dietary quercetin and the interaction between quercetin and P450 and glutathione S-transferase (GST) polymorphisms on lung cancer risk in 1822 incident lung cancer cases and 1991 frequency-matched controls from the Environment And Genetics in Lung cancer Etiology study. In non-tumor lung tissue from 38 adenocarcinoma patients, we assessed the correlation between quercetin intake and messenger RNA expression of the same P450 and GST metabolic genes. Multivariate odds ratios (ORs) and 95% confidence intervals (CIs) for sex-specific quintiles of intake were calculated using unconditional logistic regression adjusting for putative risk factors. Frequent intake of quercetin-rich foods was inversely associated with lung cancer risk (OR = 0.49; 95% CI: 0.37–0.67; P-trend < 0.001) and did not differ by P450 or GST genotypes, gender or histological subtypes. The association was stronger in subjects who smoked >20 cigarettes per day (OR = 0.35; 95% CI: 0.19–0.66; P-trend = 0.003). Based on a two-sample t-test, we compared gene expression and high versus low consumption of quercetin-rich foods and observed an overall upregulation of GSTM1, GSTM2, GSTT2, and GSTP1 as well as a downregulation of specific P450 genes (P-values < 0.05, adjusted for age and smoking status). In conclusion, we observed an inverse association of quercetin-rich food with lung cancer risk and identified a possible mechanism of quercetin-related changes in the expression of genes involved in the metabolism of tobacco carcinogens in humans. Our findings suggest an interplay between quercetin intake, tobacco smoking, and lung cancer risk. Further research on this relationship is warranted.
PMCID: PMC2847089  PMID: 20044584
20.  Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons 
Carcinogenesis  2009;31(2):216-221.
Shorter telomere length (TL) in peripheral blood lymphocytes (PBLs) is predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens that cause chromosome instability. Whether PAH exposure and its molecular effects are linked with shorter TL has never been evaluated. In the present study, we investigated the effect of chronic exposure to PAHs on TL measured in PBLs of Polish male non-current smoking cokeoven workers and matched controls. PAH exposure and molecular effects were characterized using measures of internal dose (urinary 1-pyrenol), effective dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)–DNA adduct], genetic instability (micronuclei, MN) and DNA methylation [p53 promoter and Alu and long interspersed nuclear element-1 (LINE-1) repetitive elements, as surrogate measures of global methylation] in PBLs. TL was measured by real-time polymerase chain reaction. Cokeoven workers were heavily exposed to PAHs (79% exceeded the urinary 1-pyrenol biological exposure index) and exhibited lower TL (P = 0.038) than controls, as well as higher levels of genetic and chromosomal alterations [i.e. anti-BPDE–DNA adduct and MN (P < 0.0001)] and epigenetic changes [i.e. p53 gene-specific promoter and global methylation (P ≤ 0.001)]. TL decreased with longer duration of work as cokeoven worker (P = 0.039) and in all subjects with higher levels of anti-BPDE–DNA adduct (P = 0.042), p53 hypomethylation (P = 0.005) and MN (P = 0.009). In multivariate analysis, years of work in cokery (P = 0.008) and p53 hypomethylation (P = 0.001) were the principal determinants of shorter TL. Our results indicate that shorter TL is associated with chronic PAH exposure. The interrelations with other genetic and epigenetic mechanisms in our data suggest that shorter TL could be a central event in PAH carcinogenesis.
PMCID: PMC3491668  PMID: 19892797
21.  Family history of cancer and non-malignant lung diseases as risk factors for lung cancer 
Family history (FH) of lung cancer is an established risk factor for lung cancer, but the modifying effect of smoking in relatives has been rarely examined. Also, the role of FH of non-malignant lung diseases on lung cancer risk is not well known. We examined the role of FH of cancer and FH of non-malignant lung diseases in lung cancer risk, overall, and by personal smoking, FH of smoking, and histology in 1,946 cases and 2,116 population-based controls within the Environment And Genetics in Lung cancer Etiology (EAGLE) study. Odds ratios (ORs) and 95% CI from logistic regression were calculated adjusting for age, gender, residence, education, and cigarette smoking. FH of lung cancer in any family member was associated with increased lung cancer risk (OR = 1.57, 95% CI = 1.25–1.98). The odds associated with fathers’, mothers’ and siblings’ history of lung cancer were 1.41, 2.14, and 1.53, respectively. The associations were generally stronger in never smokers, younger subjects, and for the adenocarcinoma and squamous cell carcinoma subtypes. FH of chronic bronchitis and pneumonia were associated with increased (OR =1.49, 95% CI = 1.23–1.80) and decreased (OR = 0.73, 95% CI = 0.61–0.87) lung cancer risk, respectively. FH of lung cancer and FH of non-malignant lung diseases affected lung cancer risk independently, and did not appear to be modified by FH of smoking.
PMCID: PMC2865851  PMID: 19350630
family history; lung cancer; smoking; chronic bronchitis; pneumonia
22.  Phase I Metabolic Genes and Risk of Lung Cancer: Multiple Polymorphisms and mRNA Expression 
PLoS ONE  2009;4(5):e5652.
Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs) tested in candidate genes. We analyzed 25 SNPs (some previously untested) in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underling dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS). Our findings emphasize the necessity of post-GWAS fine mapping and SNP functional assessment to further elucidate cancer risk associations.
PMCID: PMC2682568  PMID: 19479063
23.  Neonatal Thyroid Function in Seveso 25 Years after Maternal Exposure to Dioxin 
PLoS Medicine  2008;5(7):e161.
Neonatal hypothyroidism has been associated in animal models with maternal exposure to several environmental contaminants; however, evidence for such an association in humans is inconsistent. We evaluated whether maternal exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent and widespread toxic environmental contaminant, is associated with modified neonatal thyroid function in a large, highly exposed population in Seveso, Italy.
Methods and Findings
Between 1994 and 2005, in individuals exposed to TCDD after the 1976 Seveso accident we conducted: (i) a residence-based population study on 1,014 children born to the 1,772 women of reproductive age in the most contaminated zones (A, very high contamination; B, high contamination), and 1,772 age-matched women from the surrounding noncontaminated area (reference); (ii) a biomarker study on 51 mother–child pairs for whom recent maternal plasma dioxin measurements were available. Neonatal blood thyroid-stimulating hormone (b-TSH) was measured on all children. We performed crude and multivariate analyses adjusting for gender, birth weight, birth order, maternal age, hospital, and type of delivery. Mean neonatal b-TSH was 0.98 μU/ml (95% confidence interval [CI] 0.90–1.08) in the reference area (n = 533), 1.35 μU/ml (95% CI 1.22–1.49) in zone B (n = 425), and 1.66 μU/ml (95% CI 1.19–2.31) in zone A (n = 56) (p < 0.001). The proportion of children with b-TSH > 5 μU/ml was 2.8% in the reference area, 4.9% in zone B, and 16.1% in zone A (p < 0.001). Neonatal b-TSH was correlated with current maternal plasma TCDD (n = 51, β = 0.47, p < 0.001) and plasma toxic equivalents of coplanar dioxin-like compounds (n = 51, β = 0.45, p = 0.005).
Our data indicate that environmental contaminants such as dioxins have a long-lasting capability to modify neonatal thyroid function after the initial exposure.
Andrea Baccarelli and colleagues show that maternal exposure to a dioxin following the industrial accident in Seveso, Italy in 1976 is associated with modified neonatal thyroid function even many years later.
Editors' Summary
The thyroid, a butterfly-shaped gland in the neck, controls the speed at which the human body converts food into the energy and chemicals needed for life. In healthy people, the thyroid makes and releases two hormones (chemical messengers that travel around the body and regulate the activity of specific cells) called thyroxine (T4) and triiodothyronine (T3). The release of T4 and T3 is controlled by thyroid secreting hormone (TSH), which is made by the pituitary gland in response to electrical messages from the brain. If the thyroid stops making enough T4 and T3, a condition called hypothyroidism (an underactive thyroid) develops. Adults with hypothyroidism put on weight, feel the cold, and are often tired; children with hypothyroidism may also have poor growth and mental development. Because even a small reduction in thyroid hormone levels increases TSH production by the pituitary, hypothyroidism is often diagnosed by measuring the amount of TSH in the blood; it is treated with daily doses of the synthetic thyroid hormone levothyroxine.
Why Was This Study Done?
Although hypothyroidism is most common in ageing women, newborn babies sometimes have hypothyroidism. If untreated, “neonatal” hyperthyroidism can cause severe mental and physical retardation so, in many countries, blood TSH levels are measured soon after birth. That way, levothyroxine treatment can be started before thyroid hormone deficiency permanently damages the baby's developing body and brain. But what causes neonatal hypothyroidism? Animal experiments (and some but not all studies in people) suggest that maternal exposure to toxic chemicals called dioxins may be one cause. Dioxins are byproducts of waste incineration that persist in the environment and that accumulate in people. In this study, the researchers investigate whether exposure to dioxin (this name refers to the most toxic of the dioxins—2,3,7,8-Tetrachlorodibenzo-p-dioxin) affects neonatal thyroid function by studying children born near Seveso, Italy between 1994 and 2005. An accident at a chemical factory in 1976 heavily contaminated the region around this town with dioxin and, even now, the local people have high amounts of dioxin in their bodies.
What Did the Researchers Do and Find?
The researchers identified 1,772 women of child-bearing age who were living very near the Seveso factory (the most highly contaminated area, zone A) or slightly further away where the contamination was less but still high (zone B) at the time of the accident or soon after. As controls, they selected 1,772 women living in the surrounding, noncontaminated (reference) area. Altogether, these women had 1,014 babies between 1994 and 2005. The babies born to the mothers living in the reference area had lower neonatal blood TSH levels on average than the babies born to mothers living in zone A; zone B babies had intermediate TSH levels. Zone A babies were 6.6. times more likely to have a TSH level of more than 5 μU/ml than the reference area babies (the threshold TSH level for further investigations is 10 μU/ml; the average TSH level among the reference area babies was 0.98 μU/ml). The researchers also examined the relationship between neonatal TSH measurements and maternal dioxin measurements at delivery (extrapolated from measurements made between 1992 and 1998) in 51 mother–baby pairs. Neonatal TSH levels were highest in the babies whose mothers had the highest blood dioxin levels.
What Do These Findings Mean?
These findings suggest that maternal dioxin exposure has a long-lasting, deleterious effect on neonatal thyroid function. Because the long-term progress of the children in this study was not examined, it is not known whether the increases in neonatal TSH measurements associated with dioxin exposure caused any developmental problems. However, in regions where there is a mild iodine deficiency (the only environmental exposure consistently associated with reduced human neonatal thyroid function), TSH levels are increased to a similar extent and there is evidence of reduced intellectual and physical development. Future investigations on the progress of this group of children should show whether the long-term legacy of the Seveso accident (and of the high environmental levels of dioxin elsewhere) includes any effects on children's growth and development.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus encyclopedia provides information about hypothyroidism and neonatal hypothyroidism; MedlinePlus provides links to additional information on thyroid diseases (in English and Spanish)
The UK National Health Service Direct health encyclopedia provides information on hypothyroidism
The Nemours Foundation's KidsHealth site has information written for children about thyroid disorders
Toxtown, an interactive site from the US National Library of Science, provides information on environmental health concerns including exposure to dioxins (in English and Spanish)
More information about dioxins is provided by the US Environmental Protection Agency and by the US Food and Drug Administration
Wikipedia has a page on the Seveso disaster (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2488197  PMID: 18666825
24.  Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer 
BMC Public Health  2008;8:203.
Lung cancer is the leading cause of cancer mortality worldwide. Tobacco smoking is its primary cause, and yet the precise molecular alterations induced by smoking in lung tissue that lead to lung cancer and impact survival have remained obscure. A new framework of research is needed to address the challenges offered by this complex disease.
We designed a large population-based case-control study that combines a traditional molecular epidemiology design with a more integrative approach to investigate the dynamic process that begins with smoking initiation, proceeds through dependency/smoking persistence, continues with lung cancer development and ends with progression to disseminated disease or response to therapy and survival. The study allows the integration of data from multiple sources in the same subjects (risk factors, germline variation, genomic alterations in tumors, and clinical endpoints) to tackle the disease etiology from different angles. Before beginning the study, we conducted a phone survey and pilot investigations to identify the best approach to ensure an acceptable participation in the study from cases and controls. Between 2002 and 2005, we enrolled 2101 incident primary lung cancer cases and 2120 population controls, with 86.6% and 72.4% participation rate, respectively, from a catchment area including 216 municipalities in the Lombardy region of Italy. Lung cancer cases were enrolled in 13 hospitals and population controls were randomly sampled from the area to match the cases by age, gender and residence. Detailed epidemiological information and biospecimens were collected from each participant, and clinical data and tissue specimens from the cases. Collection of follow-up data on treatment and survival is ongoing.
EAGLE is a new population-based case-control study that explores the full spectrum of lung cancer etiology, from smoking addiction to lung cancer outcome, through examination of epidemiological, molecular, and clinical data. We have provided a detailed description of the study design, field activities, management, and opportunities for research following this integrative approach, which allows a sharper and more comprehensive vision of the complex nature of this disease. The study is poised to accelerate the emergence of new preventive and therapeutic strategies with potentially enormous impact on public health.
PMCID: PMC2464602  PMID: 18538025
25.  Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival 
PLoS ONE  2008;3(2):e1651.
Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure.
Methodology/Principal Findings
We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p<0.001 and fold-change >1.5, for each comparison), consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001) and TTK (p = 0.002) expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers.
Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.
PMCID: PMC2249927  PMID: 18297132

Results 1-25 (26)