PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (64)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Are Women Who Smoke at Higher Risk for Lung Cancer Than Men Who Smoke? 
American Journal of Epidemiology  2013;177(7):601-612.
Worldwide lung cancer incidence is decreasing or leveling off among men, but rising among women. Sex differences in associations of tobacco carcinogens with lung cancer risk have been hypothesized, but the epidemiologic evidence is conflicting. We tested sex-smoking interaction in association with lung cancer risk within a population-based case-control study, the Environment and Genetics in Lung Cancer Etiology (EAGLE) Study (Lombardy, Italy, 2002–2005). Detailed lifetime smoking histories were collected by personal interview in 2,100 cases with incident lung cancer and 2,120 controls. Odds ratios and 95% confidence intervals for pack-years of cigarette smoking were estimated by logistic regression, adjusted for age, residence area, and time since quitting smoking. To assess sex-smoking interaction, we compared the slopes of odds ratios for logarithm of pack-years in a model for men and women combined. Overall, the slope for pack-years was steeper in men (odds ratio for female-smoking interaction = 0.39, 95% confidence interval: 0.24, 0.62; P < 0.0001); after restriction to ever smokers, the difference in slopes was much smaller (odds ratio for interaction = 0.63, 95% confidence interval: 0.29, 1.37; P = 0.24). Similar results were found by histological type. Results were unchanged when additional confounders were evaluated (e.g., tobacco type, inhalation depth, Fagerström-assessed nicotine dependence). These findings do not support a higher female susceptibility to tobacco-related lung cancer.
doi:10.1093/aje/kws445
PMCID: PMC3657535  PMID: 23425629
case-control studies; lung cancer; sex differences; smoking
2.  Nonsteroidal anti-inflammatory drugs and other analgesic use and bladder cancer in northern New England 
A few epidemiologic studies have found that use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced risk of bladder cancer. However, the effects of specific NSAID use and individual variability in risk have not been well studied. We examined the association between NSAIDs use and bladder cancer risk, and its modification by 39 candidate genes related to NSAID metabolism. A population-based case–control study was conducted in northern New England, enrolling 1,171 newly diagnosed cases and 1,418 controls. Regular use of nonaspirin, nonselective NSAIDs was associated with reduced bladder cancer risk, with a statistically significant inverse trend in risk with duration of use (ORs of 1.0, 0.8, 0.6 and 0.6 for <5, 5–9, 10–19 and 201 years, respectively; ptrend = 0.015). This association was driven mainly by ibuprofen; significant inverse trends in risk with increasing duration and dose of ibuprofen were observed (ptrend = 0.009 and 0.054, respectively). The reduced risk from ibuprofen use was limited to individuals carrying the T allele of a single nucleotide polymorphism (rs4646450) compared to those who did not use ibuprofen and did not carry the T allele in the CYP3A locus, providing new evidence that this association might be modified by polymorphisms in genes that metabolize ibuprofen. Significant positive trends in risk with increasing duration and cumulative dose of selective cyclooxygenase (COX-2) inhibitors were observed. Our results are consistent with those from previous studies linking use of NSAIDs, particularly ibuprofen, with reduced risk. We observed a previously unrecognized risk associated with use of COX-2 inhibitors, which merits further evaluation.
doi:10.1002/ijc.27590
PMCID: PMC3951299  PMID: 22505343
bladder cancer; nonsteroidal anti-inflammatory drugs; gene–drug interaction; CYP3A
4.  Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident 
PLoS ONE  2014;9(1):e85723.
The 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed hitherto. Dose-response patterns were examined in a thyroid screening prevalence cohort of 13,127 persons aged <18 at the time of the accident who were resident in the most radioactively contaminated regions of Ukraine. We extended earlier analyses in this cohort by adjusting for dose error in the recently developed TD-10 dosimetry. Three methods of statistical correction, via two types of regression calibration, and Monte Carlo maximum-likelihood, were applied to the doses that can be derived from the ratio of thyroid activity to thyroid mass. The two components that make up this ratio have different types of error, Berkson error for thyroid mass and classical error for thyroid activity. The first regression-calibration method yielded estimates of excess odds ratio of 5.78 Gy−1 (95% CI 1.92, 27.04), about 7% higher than estimates unadjusted for dose error. The second regression-calibration method gave an excess odds ratio of 4.78 Gy−1 (95% CI 1.64, 19.69), about 11% lower than unadjusted analysis. The Monte Carlo maximum-likelihood method produced an excess odds ratio of 4.93 Gy−1 (95% CI 1.67, 19.90), about 8% lower than unadjusted analysis. There are borderline-significant (p = 0.101–0.112) indications of downward curvature in the dose response, allowing for which nearly doubled the low-dose linear coefficient. In conclusion, dose-error adjustment has comparatively modest effects on regression parameters, a consequence of the relatively small errors, of a mixture of Berkson and classical form, associated with thyroid dose assessment.
doi:10.1371/journal.pone.0085723
PMCID: PMC3906013  PMID: 24489667
5.  Risk of Total and Aggressive Prostate Cancer and Pesticide Use in the Agricultural Health Study 
American Journal of Epidemiology  2012;177(1):59-74.
Because pesticides may operate through different mechanisms, the authors studied the risk of prostate cancer associated with specific pesticides in the Agricultural Health Study (1993–2007). With 1,962 incident cases, including 919 aggressive prostate cancers among 54,412 applicators, this is the largest study to date. Rate ratios and 95% confidence intervals were calculated by using Poisson regression to evaluate lifetime use of 48 pesticides and prostate cancer incidence. Three organophosphate insecticides were significantly associated with aggressive prostate cancer: fonofos (rate ratio (RR) for the highest quartile of exposure (Q4) vs. nonexposed = 1.63, 95% confidence interval (CI): 1.22, 2.17; Ptrend < 0.001); malathion (RR for Q4 vs. nonexposed = 1.43, 95% CI: 1.08, 1.88; Ptrend = 0.04); and terbufos (RR for Q4 vs. nonexposed = 1.29, 95% CI: 1.02, 1.64; Ptrend = 0.03). The organochlorine insecticide aldrin was also associated with increased risk of aggressive prostate cancer (RR for Q4 vs. nonexposed = 1.49, 95% CI: 1.03, 2.18; Ptrend = 0.02). This analysis has overcome several limitations of previous studies with the inclusion of a large number of cases with relevant exposure and detailed information on use of specific pesticides at 2 points in time. Furthermore, this is the first time specific pesticides are implicated as risk factors for aggressive prostate cancer.
doi:10.1093/aje/kws225
PMCID: PMC3590039  PMID: 23171882
aggressive prostate cancer; cohort study; farming; organophosphate insecticides; pesticide exposure; prostate cancer
6.  GSTM1 and GSTT1 copy numbers and mRNA expression in lung cancer 
Molecular carcinogenesis  2012;51(Suppl 1):E142-E150.
Large fractions of the human population do not express GSTM1 and GSTT1 (GSTM1/T1) enzymes because of deletions in these genes. These variations affect xenobiotic metabolism and have been evaluated in relation to lung cancer risk, mostly based on null/present gene models. We measured GSTM1/T1 heterozygous deletions, not tested in genome-wide association studies, in 2120 controls and 2100 cases from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We evaluated their effect on mRNA expression on lung tissue and peripheral blood samples and their association with lung cancer risk overall and by histology types. We tested the null/present, dominant and additive models using logistic regression. Cigarette smoking and gender were studied as possible modifiers. Gene expression from blood and lung tissue cells was strongly down-regulated in subjects carrying GSTM1/T1 deletions by both trend and dominant models (p<0.001). In contrast to the null/present model, analyses distinguishing subjects with 0, 1 or 2 GSTM1/T1 deletions revealed several associations. There was a decreased lung cancer risk in never-smokers (OR=0.44;95%CI=0.23–0.82; p=0.01) and women (OR=0.50;95%CI=0.28–0.90; p=0.02) carrying 1 or 2 GSTM1 deletions. Analogously, male smokers had an increased risk (OR=1.13;95%CI=1.0–1.28; p=0.05) and women a decreased risk (OR=0.78;95%CI=0.63–0.97; p=0.02) for increasing GSTT1 deletions. The corresponding gene-smoking and gene-gender interactions were significant (p<0.05). Our results suggest that decreased activity of GSTM1/T1 enzymes elevates lung cancer risk in male smokers, likely due to impaired carcinogens’ detoxification. A protective effect of the same mutations may be operative in never-smokers and women, possibly because of reduced activity of other genotoxic chemicals.
doi:10.1002/mc.21890
PMCID: PMC3376678  PMID: 22392686
GST; copy numbers; gene expression; lung cancer; smoking and gender differences
7.  A Pooled Analysis of Thyroid Cancer Incidence Following Radiotherapy for Childhood Cancer 
Radiation research  2012;178(4):365-376.
Childhood cancer five-year survival now exceeds 70–80%. Childhood exposure to radiation is a known thyroid carcinogen; however, data are limited for the evaluation of radiation dose-response at high doses, modifiers of the dose-response relationship and joint effects of radiotherapy and chemotherapy. To address these issues, we pooled two cohort and two nested case-control studies of childhood cancer survivors including 16,757 patients, with 187 developing primary thyroid cancer. Relative risks (RR) with 95% confidence intervals (CI) for thyroid cancer by treatment with alkylating agents, anthracyclines or bleomycin were 3.25 (0.9–14.9), 4.5 (1.4–17.8) and 3.2 (0.8–10.4), respectively, in patients without radiotherapy, and declined with greater radiation dose (RR trends, P = 0.02, 0.12 and 0.01, respectively). Radiation dose-related RRs increased approximately linearly for <10 Gy, leveled off at 10–15-fold for 10–30 Gy and then declined, but remained elevated for doses >50 Gy. The fitted RR at 10 Gy was 13.7 (95% CI: 8.0–24.0). Dose-related excess RRs increased with decreasing age at exposure (P < 0.01), but did not vary with attained age or time-since-exposure, remaining elevated 25+ years after exposure. Gender and number of treatments did not modify radiation effects. Thyroid cancer risks remained elevated many decades following radiotherapy, highlighting the need for continued follow up of childhood cancer survivors.
PMCID: PMC3488851  PMID: 22857014
8.  Impact of occupational carcinogens on lung cancer risk in a general population 
Background Exposure to occupational carcinogens is an important preventable cause of lung cancer. Most of the previous studies were in highly exposed industrial cohorts. Our aim was to quantify lung cancer burden attributable to occupational carcinogens in a general population.
Methods We applied a new job–exposure matrix (JEM) to translate lifetime work histories, collected by personal interview and coded into standard job titles, into never, low and high exposure levels for six known/suspected occupational lung carcinogens in the Environment and Genetics in Lung cancer Etiology (EAGLE) population-based case–control study, conducted in Lombardy region, Italy, in 2002–05. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated in men (1537 cases and 1617 controls), by logistic regression adjusted for potential confounders, including smoking and co-exposure to JEM carcinogens. The population attributable fraction (PAF) was estimated as impact measure.
Results Men showed an increased lung cancer risk even at low exposure to asbestos (OR: 1.76; 95% CI: 1.42–2.18), crystalline silica (OR: 1.31; 95% CI: 1.00–1.71) and nickel–chromium (OR: 1.18; 95% CI: 0.90–1.53); risk increased with exposure level. For polycyclic aromatic hydrocarbons, an increased risk (OR: 1.64; 95% CI: 0.99–2.70) was found only for high exposures. The PAFs for any exposure to asbestos, silica and nickel–chromium were 18.1, 5.7 and 7.0%, respectively, equivalent to an overall PAF of 22.5% (95% CI: 14.1–30.0). This corresponds to about 1016 (95% CI: 637–1355) male lung cancer cases/year in Lombardy.
Conclusions These findings support the substantial role of selected occupational carcinogens on lung cancer burden, even at low exposures, in a general population.
doi:10.1093/ije/dys042
PMCID: PMC3396321  PMID: 22467291
lung neoplasms; case–control study; carcinogens; occupational health
9.  Methyl bromide exposure and cancer risk in the Agricultural Health Study 
Cancer causes & control : CCC  2012;23(6):807-818.
Purpose
Methyl bromide is a genotoxic soil fumigant with high acute toxicity, but unknown human carcinogenicity. Although many countries have reduced methyl bromide use because of its ozone depleting properties, some uses remain in the United States and other countries, warranting further investigation of human health effects.
Methods
We used Poisson regression to calculate rate ratios (RR) and 95% confidence intervals (CI) for associations between methyl bromide use and all cancers combined and 12 specific sites among 53,588 Agricultural Health Study (AHS) pesticide applicators with follow-up from 1993–2007. We also evaluated interactions with a family history for four common cancers (prostate, lung, colon, and lymphohematopoietic). We categorized methyl bromide exposure based on lifetime days applied weighted by an intensity score.
Results
A total of 7,814 applicators (14.6%) used methyl bromide, predominantly before enrollment. Based on 15 exposed cases, stomach cancer risk increased monotonically with increasing methyl bromide use (RR=1.42; 95% CI: 0.51–3.95 and RR=3.13; 95% CI: 1.25–7.80 for low and high use compared with no use; ptrend=0.02). No other sites displayed a significant monotonic pattern. Although we previously observed an association with prostate cancer (follow-up through 1999), the association did not persist with longer follow-up. We observed a non-significant elevated risk of prostate cancer with methyl bromide use among those with a family history of prostate cancer, but the interaction with a family history did not achieve statistical significance.
Conclusions
Our results provide little evidence of methyl bromide associations with cancer risk for most sites examined; however, we observed a significant exposure-dependent increase in stomach cancer risk. Small numbers of exposed cases and declining methyl bromide use might have influenced our findings. Further study is needed in more recently exposed populations to expand on these results.
doi:10.1007/s10552-012-9949-2
PMCID: PMC3430844  PMID: 22527160
methyl bromide; fumigant; pesticide; cancer
10.  Lifetime Organophosphorous Insecticide Use among Private Pesticide Applicators in the Agricultural Health Study 
Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Agricultural Health Study (AHS) using lifetime pesticide use data from 701 randomly selected male participants collected at three time periods. Of 27 OPs studied, 20 were used by >1%. Overall, 95% had ever applied at least one OP. The median number of different OPs used was 4 (maximum=13). Malathion was the most commonly used OP (74%) followed by chlorpyrifos (54%). OP use declined over time. At the first interview (1993–1997), 68% of participants had applied OPs in the past year; by the last interview (2005–2007), only 42% had. Similarly, median annual application days of OPs declined from 13.5 to 6 days. While OP use was common, the specific OPs used varied by state, time period, and individual. Much of the variability in OP use was associated with the choice of OP, rather than the frequency or duration of application. Information on farmers’ OP use enhances our ability to characterize and understand the potential health effects of multiple OP exposures.
doi:10.1038/jes.2012.79
PMCID: PMC3478402  PMID: 22854518
pesticide use; farming; organophosphorous insecticide
11.  Impact of Pesticide Exposure Misclassification on Estimates of Relative Risks in the Agricultural Health Study 
Background
The Agricultural Health Study (AHS) is a prospective study of licensed pesticide applicators (largely farmers) and their spouses in Iowa and North Carolina. We evaluate the impact of occupational pesticide exposure misclassification on relative risks using data from the cohort and the AHS Pesticide Exposure Study (AHS/PES).
Methods
We assessed the impact of exposure misclassification on relative risks using the range of correlation coefficients observed between measured post-application urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos metabolite and exposure estimates based on an algorithm from 83 AHS pesticide applications.
Results
The correlations between urinary levels of 2,4-D and chlorpyrifos metabolite and estimated exposure intensity scores from the expert-derived algorithm were about 0.4 for 2,4-D (n=64), 0.8 for liquid chlorpyrifos (n=4), and 0.6 for granular chlorpyrifos (n=12). Correlations of urinary levels with individual exposure determinants (e.g., kilograms of active ingredient used, duration of application, or number of acres treated) were lower and ranged from −0.36 to 0.19. These findings indicate that scores from an a priori expert-derived algorithm developed for the AHS were more closely related to measured urinary levels than the several individual exposure determinants evaluated here. Estimates of potential bias in relative risks observed in the AHS based on the correlations from the AHS/PES and the proportion of the AHS cohort exposed to various pesticides indicate that nondifferential misclassification of exposure using the algorithm would bias some estimates toward the null, but less than the misclassification associated with individual exposure determinants.
Conclusions
Based on these correlations and the proportion of the AHS cohort exposed to various pesticides, the potential bias in relative risks from nondifferential exposure misclassification is reduced when exposure estimates are based on an expert algorithm compared to estimates based on separate individual exposure determinants often used in epidemiologic studies. Although correlations between algorithm scores and urinary levels were quite good (i.e., correlations between 0.4 and 0.8), exposure misclassification would still bias relative risk estimates in the AHS towards the null and diminish study power.
doi:10.1136/oem.2010.059469
PMCID: PMC3566632  PMID: 21257983
12.  Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk 
Carcinogenesis  2011;33(2):331-337.
Previous research demonstrates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, human biomonitoring studies indicate increased genetic damage (e.g. chromosomal aberrations) with pesticide exposure. Given that the nucleotide excision repair (NER) pathway repairs a broad range of DNA damage, we evaluated interactions between pesticide exposure and 324 single-nucleotide polymorphisms (SNPs) tagging 27 NER genes among 776 prostate cancer cases and 1444 male controls in a nested case–control study of white Agricultural Health Study pesticide applicators. We determined interaction P values using likelihood ratio tests from logistic regression models and three-level pesticide variables (none/low/high) based on lifetime days of use weighted to an intensity score. We adjusted for multiple comparisons using the false discovery rate (FDR) method. Of the 17 interactions that met FDR <0.2, 3 displayed a monotonic increase in prostate cancer risk with increasing exposure in one genotype group and no significant association in the other group. Men carrying the variant A allele at ERCC1 rs2298881 exhibited increased prostate cancer risk with high versus no fonofos use [odds ratio (OR) 2.98; 95% confidence interval (CI) 1.65–5.39; Pinteract = 3.6 × 10−4; FDR-adjusted P = 0.11]. Men carrying the homozygous wild-type TT genotype at two correlated CDK7 SNPs, rs11744596 and rs2932778 (r2 = 1.0), exhibited increased risk with high versus no carbofuran use (OR 2.01; 95% CI 1.31–3.10 for rs11744596; Pinteract = 7.2 × 10−4; FDR-adjusted P = 0.09). In contrast, we did not observe associations among men with other genotypes at these loci. While requiring replication, our findings suggest a role for NER genetic variation in pesticide-associated prostate cancer risk.
doi:10.1093/carcin/bgr258
PMCID: PMC3271261  PMID: 22102698
13.  Radiation and the Risk of Chronic Lymphocytic and Other Leukemias among Chornobyl Cleanup Workers 
Background: Risks of most types of leukemia from exposure to acute high doses of ionizing radiation are well known, but risks associated with protracted exposures, as well as associations between radiation and chronic lymphocytic leukemia (CLL), are not clear.
Objectives: We estimated relative risks of CLL and non-CLL from protracted exposures to low-dose ionizing radiation.
Methods: A nested case–control study was conducted in a cohort of 110,645 Ukrainian cleanup workers of the 1986 Chornobyl nuclear power plant accident. Cases of incident leukemia diagnosed in 1986–2006 were confirmed by a panel of expert hematologists/hematopathologists. Controls were matched to cases on place of residence and year of birth. We estimated individual bone marrow radiation doses by the Realistic Analytical Dose Reconstruction with Uncertainty Estimation (RADRUE) method. We then used a conditional logistic regression model to estimate excess relative risk of leukemia per gray (ERR/Gy) of radiation dose.
Results: We found a significant linear dose response for all leukemia [137 cases, ERR/Gy = 1.26 (95% CI: 0.03, 3.58]. There were nonsignificant positive dose responses for both CLL and non-CLL (ERR/Gy = 0.76 and 1.87, respectively). In our primary analysis excluding 20 cases with direct in-person interviews < 2 years from start of chemotherapy with an anomalous finding of ERR/Gy = –0.47 (95% CI: < –0.47, 1.02), the ERR/Gy for the remaining 117 cases was 2.38 (95% CI: 0.49, 5.87). For CLL, the ERR/Gy was 2.58 (95% CI: 0.02, 8.43), and for non-CLL, ERR/Gy was 2.21 (95% CI: 0.05, 7.61). Altogether, 16% of leukemia cases (18% of CLL, 15% of non-CLL) were attributed to radiation exposure.
Conclusions: Exposure to low doses and to low dose-rates of radiation from post-Chornobyl cleanup work was associated with a significant increase in risk of leukemia, which was statistically consistent with estimates for the Japanese atomic bomb survivors. Based on the primary analysis, we conclude that CLL and non-CLL are both radiosensitive.
doi:10.1289/ehp.1204996
PMCID: PMC3553431  PMID: 23149165
Chernobyl nuclear accident; Chornobyl; Ukraine; chronic lymphocytic leukemia; leukemia; matched case–control study; radiation; radiation dose–response relationship; radiation-induced leukemia
14.  The importance of delivery rate on odds ratios by cigarette smoking and alcohol consumption for esophageal adenocarcinoma and squamous cell carcinoma in the Barrett’s and Esophageal Adenocarcinoma Consortium 
Cancer epidemiology  2012;36(3):306-316.
Background
Cigarette smoking is associated with esophageal adenocarcinoma (EAC), esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell carcinoma (ESCC), and alcohol consumption with ESCC. However, no analyses have examined how delivery rate modifies the strength of odds ratio (OR) trends with total exposure, i.e., the impact on the OR for a fixed total exposure of high exposure rate for short duration compared with low exposure rate for long duration.
Methods
The authors pooled data from 12 case-control studies from the Barrett’s Esophagus and Esophageal Adenocarcinoma Consortium (BEACON), including 1,242 (EAC), 1,263 (EGJA) and 954 (ESCC) cases and 7,053 controls, modeled joint ORs for cumulative exposure and exposure rate for cigarette smoking and alcohol consumption, and evaluated effect modification by sex, body mass index (BMI), age and self-reported acid reflux.
Results
For smoking, all sites exhibited inverse delivery rate effects, whereby ORs with pack-years increased, but trends weakened with increasing cigarettes/day. None of the examined factors modified associations, except for ESCC where younger ages at diagnosis enhanced smoking effects (P<0.01). For EAC and EGJA, ORs with drink-years exhibited inverse associations in <5 drinks/day consumers and no association in heavier consumers. For ESCC, ORs with drink-years increased, with trends strengthening with greater drinks/day. There was no significant effect modification, except for EAC and EGJA where acid reflux mitigated the inverse associations (P=0.02). For ESCC, younger ages at diagnosis enhanced drinking-related ORs (P<0.01).
Conclusions
Patterns of ORs by pack-years and drink-years, delivery rate effects and effect modifiers revealed common as well as distinct etiologic elements for these diseases.
doi:10.1016/j.canep.2012.03.001
PMCID: PMC3489030  PMID: 22504051
alcohol drinking; risk model; smoking
15.  Xenobiotic metabolizing gene variants, pesticide use, and risk of prostate cancer 
Pharmacogenetics and genomics  2011;21(10):615-623.
Background
To explore associations with prostate cancer and farming, it is important to investigate the relationship between pesticide use and single nucleotide polymorphisms (SNPs) in xenobiotic metabolic enzyme (XME) genes.
Objectives
We evaluated pesticide-SNP interactions between 45 pesticides and 1,913 XME SNPs with respect to prostate cancer among 776 cases and 1,444 controls in the Agricultural Health Study.
Methods
We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test.
Results
A positive monotonic interaction was observed between petroleum oil/petroleum distillate use and rs1883633 in the oxidative stress gene glutamate-cysteine ligase (GCLC) (p-interaction=1.0×10−4); men carrying at least one variant allele (minor allele) experienced an increased prostate cancer risk (OR=3.7, 95% CI: 1.9–7.3). Among men carrying the variant allele for thioredoxin reductase 2 (TXNRD2) rs4485648, microsomal epoxide hyrdolase 1 (EPHX1) rs17309872, or myeloperoxidase (MPO) rs11079344, increased prostate cancer risk was observed with high compared to no petroleum oil/petroleum distillate (OR=1.9, 95% CI: 1.1–3.2, p-interaction=0.01), (OR=2.1, 95% CI: 1.1–4.0, p-interaction=0.01), or terbufos (OR=3.0, 95% CI: 1.5–6.0 p-interaction=2.0×10−3) use, respectively. No interactions were deemed noteworthy at the false discovery rate = 0.20 level; the number of observed interactions in XMEs was comparable to the number expected by chance alone.
Conclusions
We observed several pesticide-SNP interactions in oxidative stress and phase I/phase II enzyme genes and risk of prostate cancer. Additional work is needed to explain the joint contribution of genetic variation in XMEs, pesticide use, and prostate cancer risk.
doi:10.1097/FPC.0b013e3283493a57
PMCID: PMC3172373  PMID: 21716162
Prostate cancer; pesticides; xenobiotic metabolizing enzymes; single nucleotide polymorphism; interaction
16.  An Examination of Male and Female Odds Ratios by BMI, Cigarette Smoking and Alcohol Consumption for Cancers of the Oral Cavity, Pharynx and Larynx in Pooled Data from 15 Case-Control Studies 
Cancer causes & control : CCC  2011;22(9):1217-1231.
Background
Greater tobacco smoking and alcohol consumption and lower body mass index (BMI) increase odds ratios (OR) for oral cavity, oropharyngeal, hypopharyngeal and laryngeal cancers; however, there are no comprehensive sex-specific comparisons of ORs for these factors.
Methods
We analyzed 2,441 oral cavity (925 females and 1,516 males), 2,297 oropharynx (564 females and 1,733 males), 508 hypopharynx (96 females and 412 males) and 1,740 larynx (237 females and 1,503 males) cases from the INHANCE consortium of 15 head and neck cancer case-control studies. Controls numbered from 7,604 to 13,829 subjects, depending on analysis. Analyses fitted linear-exponential excess ORs models.
Results
ORs were increased in underweight (<18.5 BMI) relative to overweight and obese categories (≥25 BMI) for all sites and were homogeneous by sex. ORs by smoking and drinking in females compared to males were significantly greater for oropharyngeal cancer (p<0.01 for both factors), suggestive for hypopharyngeal cancer (p=0.05 and p=0.06, respectively), but homogeneous for oral cavity (p=0.56 and p=0.64) and laryngeal (p=0.18 and p=0.72) cancers.
Conclusions
The extent that OR modifications of smoking and drinking by sex for oropharyngeal and, possibly, hypopharyngeal cancers represent true associations, or derive from unmeasured confounders or unobserved sex-related disease subtypes (e.g., human papillomavirus positive oropharyngeal cancer) remains to be clarified.
doi:10.1007/s10552-011-9792-x
PMCID: PMC3304584  PMID: 21744095
Alcohol consumption; cigarette smoking; interactions; odds ratio models
17.  Mood Disorders and Risk of Lung Cancer in the EAGLE Case-Control Study and in the U.S. Veterans Affairs Inpatient Cohort 
PLoS ONE  2012;7(8):e42945.
Background
Mood disorders may affect lung cancer risk. We evaluated this hypothesis in two large studies.
Methodology/Principal Findings
We examined 1,939 lung cancer cases and 2,102 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) case-control study conducted in Italy (2002–2005), and 82,945 inpatients with a lung cancer diagnosis and 3,586,299 person-years without a lung cancer diagnosis in the U.S. Veterans Affairs Inpatient Cohort (VA study), composed of veterans with a VA hospital admission (1969–1996). In EAGLE, we calculated odds ratios (ORs) and 95% confidence intervals (CI), with extensive adjustment for tobacco smoking and multiple lifestyle factors. In the VA study, we estimated lung cancer relative risks (RRs) and 95% CIs with time-dependent Poisson regression, adjusting for attained age, calendar year, hospital visits, time within the study, and related previous medical diagnoses. In EAGLE, we found decreased lung cancer risk in subjects with a personal history of mood disorders (OR: 0.59, 95% CI: 0.44–0.79, based on 121 lung cancer incident cases and 192 controls) and family history of mood disorders (OR: 0.62, 95% CI: 0.50–0.77, based on 223 lung cancer cases and 345 controls). The VA study analyses yielded similar results (RR: 0.74, 95% CI: 0.71–0.77, based on 2,304 incident lung cancer cases and 177,267 non-cancer person-years) in men with discharge diagnoses for mood disorders. History of mood disorders was associated with nicotine dependence, alcohol and substance use and psychometric scales of depressive and anxiety symptoms in controls for these studies.
Conclusions/Significance
The consistent finding of a relationship between mood disorders and lung cancer risk across two large studies calls for further research into the complex interplay of risk factors associated with these two widespread and debilitating diseases. Although we adjusted for smoking effects in EAGLE, residual confounding of the results by smoking cannot be ruled out.
doi:10.1371/journal.pone.0042945
PMCID: PMC3413657  PMID: 22880133
18.  The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk 
Journal of Cancer Epidemiology  2012;2012:358076.
Background. Lipid metabolism processes have been implicated in prostate carcinogenesis. Since several pesticides are lipophilic or are metabolized via lipid-related mechanisms, they may interact with variants of genes in the lipid metabolism pathway. Methods. In a nested case-control study of 776 cases and 1444 controls from the Agricultural Health Study (AHS), a prospective cohort study of pesticide applicators, we examined the interactions between 39 pesticides (none, low, and high exposure) and 220 single nucleotide polymorphisms (SNPs) in 59 genes. The false discovery rate (FDR) was used to account for multiple comparisons. Results. We found 17 interactions that displayed a significant monotonic increase in prostate cancer risk with pesticide exposure in one genotype and no significant association in the other genotype. The most noteworthy association was for ALOXE3 rs3027208 and terbufos, such that men carrying the T allele who were low users had an OR of 1.86 (95% CI = 1.16–2.99) and high users an OR of 2.00 (95% CI = 1.28–3.15) compared to those with no use of terbufos, while men carrying the CC genotype did not exhibit a significant association. Conclusion. Genetic variation in lipid metabolism genes may modify pesticide associations with prostate cancer; however our results require replication.
doi:10.1155/2012/358076
PMCID: PMC3419400  PMID: 22919386
19.  Using multiple imputation to assign pesticide use for non-responders in the follow-up questionnaire in the Agricultural Health Study 
The Agricultural Health Study (AHS), a large prospective cohort, was designed to elucidate associations between pesticide use and other agricultural exposures and health outcomes. The cohort includes 57,310 pesticide applicators who were enrolled between 1993 and 1997 in Iowa and North Carolina. A follow-up questionnaire administered 5 years later was completed by 36,342 (63%) of the original participants. Missing pesticide use information from participants who did not complete the second questionnaire impedes both long-term pesticide exposure estimation and statistical inference of risk for health outcomes. Logistic regression and stratified sampling were used to impute key variables related to the use of specific pesticides for 20,968 applicators who did not complete the second questionnaire. To assess the imputation procedure, a 20% random sample of participants was withheld for comparison. The observed and imputed prevalence of any pesticide use in the holdout dataset were 85.7% and 85.3%, respectively. The distribution of prevalence and days/year of use for specific pesticides were similar across observed and imputed in the holdout sample. When appropriately implemented, multiple imputation can reduce bias and increase precision and can be more valid than other missing data approaches.
doi:10.1038/jes.2012.31
PMCID: PMC3396426  PMID: 22569205
agriculture; cohort studies; missing data; pesticides; precision
20.  The Diesel Exhaust in Miners Study: A Nested Case–Control Study of Lung Cancer and Diesel Exhaust 
Background
Most studies of the association between diesel exhaust exposure and lung cancer suggest a modest, but consistent, increased risk. However, to our knowledge, no study to date has had quantitative data on historical diesel exposure coupled with adequate sample size to evaluate the exposure–response relationship between diesel exhaust and lung cancer. Our purpose was to evaluate the relationship between quantitative estimates of exposure to diesel exhaust and lung cancer mortality after adjustment for smoking and other potential confounders.
Methods
We conducted a nested case–control study in a cohort of 12 315 workers in eight non-metal mining facilities, which included 198 lung cancer deaths and 562 incidence density–sampled control subjects. For each case subject, we selected up to four control subjects, individually matched on mining facility, sex, race/ethnicity, and birth year (within 5 years), from all workers who were alive before the day the case subject died. We estimated diesel exhaust exposure, represented by respirable elemental carbon (REC), by job and year, for each subject, based on an extensive retrospective exposure assessment at each mining facility. We conducted both categorical and continuous regression analyses adjusted for cigarette smoking and other potential confounding variables (eg, history of employment in high-risk occupations for lung cancer and a history of respiratory disease) to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death (case subjects)/reference date (control subjects). All statistical tests were two-sided.
Results
We observed statistically significant increasing trends in lung cancer risk with increasing cumulative REC and average REC intensity. Cumulative REC, lagged 15 years, yielded a statistically significant positive gradient in lung cancer risk overall (P trend = .001); among heavily exposed workers (ie, above the median of the top quartile [REC ≥ 1005 μg/m3-y]), risk was approximately three times greater (OR = 3.20, 95% CI = 1.33 to 7.69) than that among workers in the lowest quartile of exposure. Among never smokers, odd ratios were 1.0, 1.47 (95% CI = 0.29 to 7.50), and 7.30 (95% CI = 1.46 to 36.57) for workers with 15-year lagged cumulative REC tertiles of less than 8, 8 to less than 304, and 304 μg/m3-y or more, respectively. We also observed an interaction between smoking and 15-year lagged cumulative REC (P interaction = .086) such that the effect of each of these exposures was attenuated in the presence of high levels of the other.
Conclusion
Our findings provide further evidence that diesel exhaust exposure may cause lung cancer in humans and may represent a potential public health burden.
doi:10.1093/jnci/djs034
PMCID: PMC3369553  PMID: 22393209
21.  The Diesel Exhaust in Miners Study: A Cohort Mortality Study With Emphasis on Lung Cancer 
Background
Current information points to an association between diesel exhaust exposure and lung cancer and other mortality outcomes, but uncertainties remain.
Methods
We undertook a cohort mortality study of 12 315 workers exposed to diesel exhaust at eight US non-metal mining facilities. Historical measurements and surrogate exposure data, along with study industrial hygiene measurements, were used to derive retrospective quantitative estimates of respirable elemental carbon (REC) exposure for each worker. Standardized mortality ratios and internally adjusted Cox proportional hazard models were used to evaluate REC exposure–associated risk. Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death.
Results
Standardized mortality ratios for lung cancer (1.26, 95% confidence interval [CI] = 1.09 to 1.44), esophageal cancer (1.83, 95% CI = 1.16 to 2.75), and pneumoconiosis (12.20, 95% CI = 6.82 to 20.12) were elevated in the complete cohort compared with state-based mortality rates, but all-cause, bladder cancer, heart disease, and chronic obstructive pulmonary disease mortality were not. Differences in risk by worker location (ever-underground vs surface only) initially obscured a positive diesel exhaust exposure–response relationship with lung cancer in the complete cohort, although it became apparent after adjustment for worker location. The hazard ratios (HRs) for lung cancer mortality increased with increasing 15-year lagged cumulative REC exposure for ever-underground workers with 5 or more years of tenure to a maximum in the 640 to less than 1280 μg/m3-y category compared with the reference category (0 to <20 μg/m3-y; 30 deaths compared with eight deaths of the total of 93; HR = 5.01, 95% CI = 1.97 to 12.76) but declined at higher exposures. Average REC intensity hazard ratios rose to a plateau around 32 μg/m3. Elevated hazard ratios and evidence of exposure–response were also seen for surface workers. The association between diesel exhaust exposure and lung cancer risk remained after inclusion of other work-related potentially confounding exposures in the models and were robust to alternative approaches to exposure derivation.
Conclusions
The study findings provide further evidence that exposure to diesel exhaust increases risk of mortality from lung cancer and have important public health implications.
doi:10.1093/jnci/djs035
PMCID: PMC3373218  PMID: 22393207
22.  The Diesel Exhaust in Miners Study: V. Evaluation of the Exposure Assessment Methods 
Annals of Occupational Hygiene  2012;56(4):389-400.
Exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), was assessed for an epidemiologic study investigating the association between DE and mortality, particularly from lung cancer, among miners at eight mining facilities from the date of dieselization (1947–1967) through 1997. To provide insight into the quality of the estimates for use in the epidemiologic analyses, several approaches were taken to evaluate the exposure assessment process and the quality of the estimates. An analysis of variance was conducted to evaluate the variability of 1998–2001 REC measurements within and between exposure groups of underground jobs. Estimates for the surface exposure groups were evaluated to determine if the arithmetic means (AMs) of the REC measurements increased with increased proximity to, or use of, diesel-powered equipment, which was the basis on which the surface groups were formed. Estimates of carbon monoxide (CO) (another component of DE) air concentrations in 1976–1977, derived from models developed to predict estimated historical exposures, were compared to 1976–1977 CO measurement data that had not been used in the model development. Alternative sets of estimates were developed to investigate the robustness of various model assumptions. These estimates were based on prediction models using: (i) REC medians rather AMs, (ii) a different CO:REC proportionality than a 1:1 relation, and (iii) 5-year averages of historical CO measurements rather than modeled historical CO measurements and DE-related determinants. The analysis of variance found that in three of the facilities, most of the between-group variability in the underground measurements was explained by the use of job titles. There was relatively little between-group variability in the other facilities. The estimated REC AMs for the surface exposure groups rose overall from 1 to 5 μg m−3 as proximity to, and use of, diesel equipment increased. The alternative estimates overall were highly correlated (∼0.9) with the primary set of estimates. The median of the relative differences between the 1976–1977 CO measurement means and the 1976–1977 estimates for six facilities was 29%. Comparison of estimated CO air concentrations from the facility-specific prediction models with historical CO measurement data found an overall agreement similar to that observed in other epidemiologic studies. Other evaluations of components of the exposure assessment process found moderate to excellent agreement. Thus, the overall evidence suggests that the estimates were likely accurate representations of historical personal exposure levels to DE and are useful for epidemiologic analyses.
doi:10.1093/annhyg/mes020
PMCID: PMC3324483
diesel exhaust; elemental carbon; exposure assessment; mining
23.  Socio-economic variation in CT scanning in Northern England, 1990-2002 
Background
Socio-economic status is known to influence health throughout life. In childhood, studies have shown increased injury rates in more deprived settings. Socio-economic status may therefore be related to rates of certain medical procedures, such as computed tomography (CT) scans. This study aimed to assess socio-economic variation among young people having CT scans in Northern England between 1990 and 2002 inclusive.
Methods
Electronic data were obtained from Radiology Information Systems of all nine National Health Service hospital Trusts in the region. CT scan data, including sex, date of scan, age at scan, number and type of scans were assessed in relation to quintiles of Townsend deprivation scores, obtained from linkage of postcodes with census data, using χ2 tests and Spearman rank correlations.
Results
During the study period, 39,676 scans were recorded on 21,089 patients, with 38,007 scans and 19,485 patients (11344 male and 8132 female) linkable to Townsend scores. The overall distributions of both scans and patients by quintile of Townsend deprivation scores were significantly different to the distributions of Townsend scores from the census wards included in the study (p < 0.0001). There was a significant association between type of scan and deprivation quintile (p < 0.0001), primarily due to the higher proportions of head scans in the three most deprived quintiles, and slightly higher proportions of chest scans and abdomen and pelvis scans in the least deprived groups. There was also a significant association (p < 0.0001) between the patient's age at the time of the CT scan and Townsend deprivation quintiles, with slightly increasing proportions of younger children with increasing deprivation. A similar association with age (p < 0.0001) was seen when restricting the data to include only the first scan of each patient. The number of scans per patient was also associated with Townsend deprivation quintiles (p = 0.014).
Conclusions
Social inequalities exist in the numbers of young people undergoing CT scans with those from deprived areas more likely to do so. This may reflect the rates of injuries in these individuals and implies that certain groups within the population may receive higher radiation doses than others due to medical procedures.
doi:10.1186/1472-6963-12-24
PMCID: PMC3276411  PMID: 22283843
24.  Mortality in the Agricultural Health Study, 1993–2007 
American Journal of Epidemiology  2010;173(1):71-83.
Comparing agricultural cohorts with the general population is challenging because the general healthiness of farmers may mask potential adverse health effects of farming. Using data from the Agricultural Health Study, a cohort of 89,656 pesticide applicators and their spouses (N = 89, 656) in North Carolina and Iowa, the authors computed standardized mortality ratios (SMRs) comparing deaths from time of the enrollment (1993–1997) through 2007 to state-specific rates. To compensate for the cohort's overall healthiness, relative SMRs were estimated by calculating the SMR for each cause relative to the SMR for all other causes. In 1,198,129 person-years of follow-up, 6,419 deaths were observed. The all-cause mortality rate was less than expected (SMRapplicators = 0.54, 95% confidence interval (CI): 0.52, 0.55; SMRspouses = 0.52, 95% CI: 0.50, 0.55). SMRs for all cancers, heart disease, and diabetes were significantly below 1.0. In contrast, applicators experienced elevated numbers of machine-related deaths (SMR = 4.15, 95% CI: 3.18, 5.31), motor vehicle nontraffic accidents (SMR = 2.80, 95% CI: 1.81, 4.14), and collisions with objects (SMR = 2.12, 95% CI: 1.25, 3.34). In the relative SMR analysis for applicators, the relative mortality ratio was elevated for lymphohematopoietic cancers, melanoma, and digestive system, prostate, kidney, and brain cancers. Among spouses, relative SMRs exceeded 1.0 for lymphohematopoietic cancers and malignancies of the digestive system, brain, breast, and ovary. Unintentional fatal injuries remain an important risk for farmers; mortality ratios from several cancers were elevated relative to other causes.
doi:10.1093/aje/kwq323
PMCID: PMC3025641  PMID: 21084556
agriculture; healthy worker effect; mortality; neoplasms; pesticides; wounds and injuries
25.  Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk 
Environmental Health Perspectives  2011;119(12):1726-1732.
Background: Previous research indicates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, evidence suggests a role of oxidative DNA damage.
Objectives: Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394 tag single-nucleotide polymorphisms (SNPs) for 31 BER genes among 776 prostate cancer cases and 1,444 male controls in a nested case–control study of white Agricultural Health Study (AHS) pesticide applicators.
Methods: We used likelihood ratio tests from logistic regression models to determine p-values for interactions between three-level pesticide exposure variables (none/low/high) and SNPs (assuming a dominant model), and the false discovery rate (FDR) multiple comparison adjustment approach.
Results: The interaction between fonofos and rs1983132 in NEIL3 [nei endonuclease VIII-like 3 (Escherichia coli)], which encodes a glycosylase that can initiate BER, was the most significant overall [interaction p-value (pinteract) = 9.3 × 10–6; FDR-adjusted p-value = 0.01]. Fonofos exposure was associated with a monotonic increase in prostate cancer risk among men with CT/TT genotypes for rs1983132 [odds ratios (95% confidence intervals) for low and high use compared with no use were 1.65 (0.91, 3.01) and 3.25 (1.78, 5.92), respectively], whereas fonofos was not associated with prostate cancer risk among men with the CC genotype. Carbofuran and S-ethyl dipropylthiocarbamate (EPTC) interacted similarly with rs1983132; however, these interactions did not meet an FDR < 0.2.
Conclusions: Our significant finding regarding fonofos is consistent with previous AHS findings of increased prostate cancer risk with fonofos exposure among those with a family history of prostate cancer. Although requiring replication, our findings suggest a role of BER genetic variation in pesticide-associated prostate cancer risk.
doi:10.1289/ehp.1103454
PMCID: PMC3261977  PMID: 21810555
DNA repair; gene–environment interactions; pesticide; polymorphisms; prostate cancer

Results 1-25 (64)