PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Precipitated Withdrawal From Nicotine Reduces Reinforcing Effects of a Visual Stimulus for Rats 
Nicotine & Tobacco Research  2012;14(7):824-832.
Introduction:
Research has identified at least two positive reinforcement-related effects of nicotine: (a) primary reinforcement and (b) enhancement of reinforcement from concurrently available stimuli. Prior examples of the reinforcement-enhancing effects with rats showed that repeated, intermittent nicotine exposure increased responding for non-nicotine reinforcers, and this effect remained robust over several weeks. However, the effects of continuous nicotine exposure on responding for a non-nicotine reinforcer are unknown, as are the effects of abruptly withdrawing continuous nicotine on behavior maintained by the same reinforcer.
Methods:
Lever pressing for a visual reinforcer under a fixed ratio schedule was assessed while rats were maintained on a chronic, continuous infusion of nicotine (3.16 mg/kg/day; osmotic minipump). The effects of precipitated withdrawal on responding, following 16 days of continuous nicotine exposure, were assessed by pre-session subcutaneous injections of mecamylamine (1.0 mg/kg).
Results:
Continuous nicotine initially increased active responding for the visual reinforcer; however, continued exposure resulted in an attenuation of this effect. Precipitated withdrawal from nicotine resulted in a significant decline in active responding.
Conclusions:
The initial increase in responding for the visual reinforcer with chronic nicotine exposure is consistent with prior research showing that intermittent exposure to nicotine acts as a reinforcement enhancer. However, the attenuation of this enhancement following prolonged nicotine exposure is in contrast with the persistent effects previously reported. Finally, the decrease in visual reinforcers below control levels (nicotine-naive animals) following nicotine withdrawal highlights a potential for affective withdrawal, which may serve as a motive for continued nicotine use.
doi:10.1093/ntr/ntr293
PMCID: PMC3390550  PMID: 22218403
2.  VARIABILITY IN INITIAL NICOTINE SENSITIVITY DUE TO SEX, HISTORY OF OTHER DRUG USE, AND PARENTAL SMOKING 
Drug and alcohol dependence  2008;99(1-3):47-57.
Initial sensitivity to nicotine’s effects during early exposure to tobacco may relate to dependence vulnerability. We examined the association of initial nicotine sensitivity with individual difference factors of sex, other drug use history (i.e. cross-tolerance or cross-sensitization), and parental smoking status in young adult nonsmokers (N=131). Participants engaged in 4 sessions, the first 3 to assess the dose-response effects of nasal spray nicotine (0, 5, 10 μg/kg) on rewarding, mood, physiological, sensory processing, and performance effects, and the fourth to assess nicotine reinforcement using a choice procedure. Men had greater initial sensitivity than women to some self-reported effects of nicotine related to reward and incentive salience and to impairment in sensory processing, but men and women did not differ on most other effects. Prior marijuana use was associated with greater nicotine reward, nicotine reinforcement was greater in men versus women among those with prior marijuana use, and having parents who smoked was related to increased incentive salience. However, history of other drug use and parental smoking were not otherwise associated with initial nicotine sensitivity. These findings warrant replication with other methods of nicotine administration, especially cigarette smoking, and in more diverse samples of subjects naïve to nicotine. Yet, they suggest that sex differences in initial sensitivity to nicotine reward occur before the onset of dependence. They also suggest that parental smoking may not increase risk of nicotine dependence in offspring by altering initial nicotine sensitivity, and that cross-tolerance between other drugs and nicotine may not be robust in humans.
doi:10.1016/j.drugalcdep.2008.06.017
PMCID: PMC2648532  PMID: 18775605
nicotine; sensitivity; nonsmokers; reward; reinforcement; sex differences; cross-tolerance; parental smoking history
3.  GENE AND GENE BY SEX ASSOCIATIONS WITH INITIAL SENSITIVITY TO NICOTINE IN NONSMOKERS 
Behavioural pharmacology  2008;19(5-6):630-640.
Genetic variation may influence initial sensitivity to nicotine (i.e. during early tobacco exposure), perhaps helping to explain differential vulnerability to nicotine dependence. This study explored associations of functional candidate gene polymorphisms with initial sensitivity to nicotine in 101 young adult nonsmokers of European ancestry. Nicotine (0, 5, 10 μg/kg) was administered via nasal spray followed by mood, nicotine reward (e.g. “liking”) and perception (e.g. “feel effects”) measures, physiological responses, sensory processing (pre-pulse inhibition of startle), and performance tasks. Nicotine reinforcement was assessed in a separate session using a nicotine vs. placebo spray choice procedure. For the dopamine D4 receptor (DRD4 VNTR), presence of the 7 repeat allele was associated with greater aversive responses to nicotine (decreases in “vigor”, positive affect, and rapid information processing; increased cortisol) and reduced nicotine choice. Individuals with at least one DRD4 7-repeat allele also reported increased “feel effects” and greater startle response, but in men only. Also observed in men but not women were other genetic associations, such as greater “feel effects” and anger, and reduced fatigue, in the dopamine D2 receptor (DRD2 C957T SNP) TT versus CT or CC genotypes. Very few or no significant associations were seen for the DRD2/ANKK1 TaqIA polymorphism, the serotonin transporter promoter VNTR or 5HTTLPR (SLC6A4), the dopamine transporter 3’ VNTR (SLC6A3), and the mu opioid receptor A118G SNP (OPRM1). Although these results are preliminary, this study is the first to suggest that genetic polymorphisms related to function in the dopamine D4, and perhaps D2, receptor may modulate initial sensitivity to nicotine prior to the onset of dependence and may do so differentially between men and women.
doi:10.1097/FBP.0b013e32830c3621
PMCID: PMC2743299  PMID: 18690117
nicotine; sensitivity; genetics; dopamine; reward; reinforcement

Results 1-3 (3)