Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Zhu, jinghe")
1.  miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the Oxidative Stress pathway 
Molecular Cancer  2014;13(1):234.
Chemoresistance is a major obstacle to the curative cancer chemotherapy and presents one of the most formidable challenges in both research and management of cancer.
From the detailed studies of a multi-chemosensitive (5637) versus a chemoresistant (H-bc) bladder cancer cell lines, we showed that miR-193a-3p [GenBank: NR_029710.1] promotes the multi-chemoresistance of bladder cancer cells. We further demonstrated that lysyl oxidase-like 4 (LOXL4) gene [GenBank: NM_032211.6] is a direct target of miR-193a-3p and executes the former’s impact on bladder cancer chemoresistance. The Oxidative Stress pathway activity is drastically affected by a forced reversal of miR-193a-3p or LOXL4 levels in cell and may act at the downstream of LOXL4 gene to relay the miR-193a-3p’s impact on the multi-chemoresistance in both cultured cells and the tumor xenografts in nude mice.
In addition to a new mechanistic insight, our results provide a set of the essential genes in this newly identified miR-193a-3p/LOXL4/Oxidative Stress axis as the diagnostic targets for a guided anti-bladder cancer chemotherapy.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-234) contains supplementary material, which is available to authorized users.
PMCID: PMC4200202  PMID: 25311867
LOXL4; miR-193a-3p; Chemoresistance; Bladder cancer; Oxidative stress pathway
2.  A year of great leaps in genome research 
Genome Medicine  2012;4(1):4.
A report on the 6th International Conference on Genomics (ICG-VI), Shenzhen, China, 12-15 November 2011.
PMCID: PMC3334552  PMID: 22293069
3.  Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression 
BMC Genomics  2012;13:300.
DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara.
The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs) can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice.
The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.
PMCID: PMC3447678  PMID: 22747568
Cultivated and wild rice; Methylomes; Transcriptional termination regions (TTRs); Gene expression
4.  Rho Kinase Phosphorylation Promotes Ezrin-Mediated Metastasis in Hepatocellular Carcinoma 
Cancer research  2011;71(5):1721-1729.
During progression of hepatocellular carcinoma, multiple genetic and epigenetic alterations act to posttranslationally modulate the function of proteins that promote cancer invasion and metastasis. To define such abnormalities that contribute to liver cancer metastasis, we carried out a proteomic comparison of primary hepatocellular carcinoma and samples of intravascular thrombi from the same patient. Mass spectrometric analyses of the liver cancer samples revealed a series of acidic phospho-isotypes associated with the intravascular thrombi samples. In particular, we found that Thr567 hyperphosphorylation of the cytoskeletal protein ezrin was tightly correlated to an invasive phenotype of clinical hepatocellular carcinomas and to poor outcomes in tumor xenograft assays. Using phospho-mimicking mutants, we showed that ezrin phosphorylation at Thr567 promoted in vitro invasion by hepatocarcinoma cells. Phospho-mimicking mutant ezrinT567D, but not the nonphosphorylatable mutant ezrinT567A, stimulated formation of membrane ruffles, suggesting that Thr567 phosphorylation promotes cytoskeletal-membrane remodeling. Importantly, inhibition of Rho kinase, either by Y27632 or RNA interference, resulted in inhibition of Thr567 phosphorylation and a blockade to cell invasion, implicating Rho kinase-ezrin signaling in hepatocellular carcinoma cell invasion. Our findings suggest a strategy to reduce liver tumor metastasis by blocking Rho kinase-mediated phosphorylation of ezrin.
PMCID: PMC3119000  PMID: 21363921
5.  The ICG-V: advances in genomic profiling across the spectrum of biology and medicine 
Genome Medicine  2011;3(1):2.
A report of the 5th International Conference on Genomics (ICG-V), Shenzhen, China, 15-18 November 2010.
PMCID: PMC3092087  PMID: 21349139
6.  Global Analysis of DNA Methylation by Methyl-Capture Sequencing Reveals Epigenetic Control of Cisplatin Resistance in Ovarian Cancer Cell 
PLoS ONE  2011;6(12):e29450.
Cisplatin resistance is one of the major reasons leading to the high death rate of ovarian cancer. Methyl-Capture sequencing (MethylCap-seq), which combines precipitation of methylated DNA by recombinant methyl-CpG binding domain of MBD2 protein with NGS, global and unbiased analysis of global DNA methylation patterns. We applied MethylCap-seq to analyze genome-wide DNA methylation profile of cisplatin sensitive ovarian cancer cell line A2780 and its isogenic derivative resistant line A2780CP. We obtained 21,763,035 raw reads for the drug resistant cell line A2780CP and 18,821,061reads for the sensitive cell line A2780. We identified 1224 hyper-methylated and 1216 hypomethylated DMRs (differentially methylated region) in A2780CP compared to A2780. Our MethylCap-seq data on this ovarian cancer cisplatin resistant model provided a good resource for the research community. We also found that A2780CP, compared to A2780, has lower observed to expected methylated CpG ratios, suggesting a lower global CpG methylation in A2780CP cells. Methylation specific PCR and bisulfite sequencing confirmed hypermethylation of PTK6, PRKCE and BCL2L1 in A2780 compared with A2780CP. Furthermore, treatment with the demethylation reagent 5-aza-dC in A2780 cells demethylated the promoters and restored the expression of PTK6, PRKCE and BCL2L1.
PMCID: PMC3245283  PMID: 22216282
7.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
PMCID: PMC2976721  PMID: 21085693
8.  Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma 
BMC Cancer  2004;4:65.
Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma.
We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively). In addition, compatible tissues (normal tissues distant from lesion) from three non-astrocytoma patients were included as the control.
Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL) displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles). Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53) of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251), demonstrating that expression of these genes is likely regulated by DNA methylation. AR gene hypermethylation was found exclusively in female patients (22/27, 81%, 0/26, 0%, P < 0.001), while the IRF7 gene hypermethylation preferentially occurred in the male counterparts (11/26, 42.3% to 3/27, 11%, P < 0.05). Applying the mathematic method "the Discovery of Association Rules", we have identified groups consisting of up to three genes that more likely display the altered methylation patterns in concert in astrocytoma.
Of the thirty four genes examined, sixteen genes exhibited astrocytoma associated changes in the methylation profile. In addition to the possible pathological significance, the established concordant methylation profiles of the subsets consisting of two to three target genes may provide useful clues to the development of the useful prognostic as well as diagnostic assays for astrocytoma.
PMCID: PMC520749  PMID: 15367334
9.  Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis 
BMC Cancer  2002;2:29.
Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes.
We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors.
While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14ARF, RB1, p15INK4b, APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16INK4a , RASSF1a, CASP8 and CDH13 genes. For instance, the p16INK4a was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%).
Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16INK4a and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16INK4a and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC.
PMCID: PMC139988  PMID: 12433278

Results 1-9 (9)