PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Zhou, xiaoyan")
1.  Sulfur inhibits the growth of androgen-independent prostate cancer in vivo 
Oncology Letters  2014;9(1):437-441.
Sulfur is a bright yellow crystalline solid at room temperature. The aim of the present study was to investigate the inhibitory effect of sulfur on prostate cancer (PCa) in vivo. Prostate tumors were developed by injecting 22Rv1 or DU-145 PCa cells into sulfur-treated or untreated nude mice. The weight and volume of the tumors were measured. The cancer cells were separated from the tumors, and analyzed for their growth rate and clonogenicity in culture. The expression of PCa-targeted genes was also assessed using real-time polymerase chain reaction. The rate of growth of 22Rv1 tumors in sulfur-treated nude mice gradually decreased, and was reduced by 41.99% (P<0.01) after 22 days when compared with that of the control group. In addition, the growth of DU-145 tumors was also suppressed by 75.16% (P<0.05) after 11 weeks. The clonogenicity of the sulfur-treated tumor cells decreased by 36.7% when compared with that of the control cells. However, no significant difference in cell growth was identified. mRNA levels of the androgen-receptor, prostate specific antigen and human Hox (NKX3.1) genes were significantly decreased by 32.8, 48.2 and 42.2% in sulfur-treated tumors, respectively. Additionally, it was found that the hydrogen sulfide concentration in the serum of sulfur-treated mice was increased by 4.73% (P<0.05). Sulfur significantly suppressed the growth of PCa in vivo. Since sulfur is a known ingredient used in traditional Chinese medicine, it may be used clinically for the treatment of PCa, independently or in combination with other medicine.
doi:10.3892/ol.2014.2700
PMCID: PMC4247018  PMID: 25436005
sulfur; 22Rv1 cell line; DU-145 cell line; prostate cancer
2.  High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq 
Clinical Epigenetics  2014;6(1):18.
Background
Extensive reprogramming and dysregulation of DNA methylation is an important characteristic of pancreatic cancer (PC). Our study aimed to characterize the genomic methylation patterns in various genomic contexts of PC. The methyl capture sequencing (methylCap-seq) method was used to map differently methylated regions (DMRs) in pooled samples from ten PC tissues and ten adjacent non-tumor (PN) tissues. A selection of DMRs was validated in an independent set of PC and PN samples using methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), and methylation sensitive restriction enzyme-based qPCR (MSRE-qPCR). The mRNA and expressed sequence tag (EST) expression of the corresponding genes was investigated using RT-qPCR.
Results
A total of 1,131 PC-specific and 727 PN-specific hypermethylated DMRs were identified in association with CpG islands (CGIs), including gene-associated CGIs and orphan CGIs; 2,955 PC-specific and 2,386 PN-specific hypermethylated DMRs were associated with gene promoters, including promoters containing or lacking CGIs. Moreover, 1,744 PC-specific and 1,488 PN-specific hypermethylated DMRs were found to be associated with CGIs or CGI shores. These results suggested that aberrant hypermethylation in PC typically occurs in regions surrounding the transcription start site (TSS). The BSP, MSP, MSRE-qPCR, and RT-qPCR data indicated that the aberrant DNA methylation in PC tissue and in PC cell lines was associated with gene (or corresponding EST) expression.
Conclusions
Our study characterized the genome-wide DNA methylation patterns in PC and identified DMRs that were distributed among various genomic contexts that might influence the expression of corresponding genes or transcripts to promote PC. These DMRs might serve as diagnostic biomarkers or therapeutic targets for PC.
doi:10.1186/1868-7083-6-18
PMCID: PMC4177372  PMID: 25276247
CGI shore; DNA methylation; genome-wide; methyl capture sequencing; orphan CGI; pancreatic adenocarcinoma
3.  Preclinical humanized mouse model with ectopic ovarian tissues 
The aim of the present study was to establish human ovarian stroma within the mouse subcutaneously, in order for the resulting stroma to serve as a useful preclinical tool to study the progression of human ovarian cancer in a humanized ovarian microenvironment. Normal human ovarian tissues were subcutaneously implanted into severe combined immunodeficient (SCID) mice and then the implants were identified by immunohistochemistry. The implants became vascularized and retained their original morphology for about 4 weeks following implantation. Immunohistochemical staining for cytokeratin-7 confirmed the ovarian origin of the epithelial cells. CD34 staining demonstrated human-derived vessels. Positive estrogen receptor and partially-positive progesterone receptor staining indicated the estrogen and progesterone dependence of the implants. Only vascular pericytes expressed α-smooth muscle actin, indicating the normal ovarian origin of the xenografts. Human ovarian tissue successfully survived in SCID mice and retained its original properties. This humanized mouse model may be used as preclinical tool to investigate ovarian cancer.
doi:10.3892/etm.2014.1819
PMCID: PMC4113642  PMID: 25120592
mouse model; preclinical tool; ovarian tissues
4.  Decreased LINE-1 methylation levels in aldosterone-producing adenoma 
Purpose: Abnormal global DNA methylation levels are associated with many diseases. In this study, we examined long interspersed nuclear elements-1 (LINE-1) methylation as a biomarker for abnormal global DNA methylation and aldosterone-producing adenoma (APA). Methods: Tissues from 25 APA and 6 normal adrenal glands (NAs) were analyzed for LINE-1 methylation by real-time methylation-specific polymerase chain reaction. The estimated LINE-1 methylation level was then tested for correlation with the clinicopathologic parameters of APA patients. Results: The methylation index (MI) level for LINE-1 was 0.91 in NA samples and 0.77 in APA samples (P < 0.001). For the APA samples, there were no statistical correlations between the MI level and various clinicopathologic parameters such as gender (P = 0.07). Conclusion : LINE-1 methylation is significantly lower in APA samples than in NA samples. LINE-1 methylation is not correlated with the clinical characteristics of APA.
PMCID: PMC4129024  PMID: 25120789
Long interspersed nuclear elements-1; global DNA methylation; aldosterone-producing adenoma
5.  Abnormal methylation of seven genes and their associations with clinical characteristics in early stage non-small cell lung cancer 
Oncology Letters  2013;5(4):1211-1218.
To identify novel abnormally methylated genes in early stage non-small cell lung cancer (NSCLC), we analyzed the methylation status of 13 genes (ALX1, BCL2, FOXL2, HPP1, MYF6, OC2, PDGFRA, PHOX2A, PITX2, RARB, SIX6, SMPD3 and SOX1) in cancer tissues from 101 cases of stage I NSCLC patients and lung tissues from 30 cases of non-cancerous lung disease controls, using methylation-specific PCR (MSP). The methylation frequencies (29.70–64.36%) of 7 genes (MYF6, SIX6, SOX1, RARB, BCL2, PHOX2A and FOLX2) in stage I NSCLC were significantly higher compared with those in non-cancerous lung disease controls (P<0.05). The co-methylation of SIX6 and SOX1, or the co-methyaltion of SIX6, RARB and SOX1 was associated with adenosquamous carcinoma (ADC), and the co-methylation of BCL2, RARB and SIX6 was associated with smoking. A panel of 4 genes (MYF6, SIX6, BCL2 and RARB) may offer a sensitivity of 93.07% and a specificity of 83.33% in the diagnosis of stage I NSCLC. Furthermore, we also detected the expression of 8 pathological markers (VEGF, HER-2, P53, P21, EGFR, CHGA, SYN and EMA) in cancer tissues of stage I NSCLC by immunohistochemistry, and found that high expression levels of p53 and CHGA were associated with the methylation of BCL2 (P=0.025) and PHOX2A (P=0.023), respectively. In this study, among the 7 genes which demonstrated hypermethylation in stage I NSCLC compared with non-cancerous lung diseases, 5 genes (MYF6, SIX6, PHOX2A, FOLX2 and SOX1) were found for the first time to be abonormally methylated in NSCLC. Further study of these genes shed light on the carcinogenesis of NSCLC.
doi:10.3892/ol.2013.1161
PMCID: PMC3629069  PMID: 23599765
DNA methylation; non-small cell lung cancer; stage I; smoking
6.  Methylation status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC 
Oncology Letters  2012;3(4):901-906.
In our previous study, we attempted to develop a tool for the early diagnosis of non-small cell lung cancer (NSCLC) using DNA methylation biomarkers. With the aim of improving the diagnostic potential by optimizing the composition of the target set, in this study, 13 candidate genes (ACTA1, AIDH1A2, CBX8, CDH8, EVX1, MGC16275, NEUROG1, NEUROG2, NID2, OTX2OS1, PGAM2, PHOX2B and TOX) were analyzed by methylation-specific PCR to determine the methylation status of each gene in 5 NSCLC cell lines and in lung tissue samples from 15 healthy volunteers, 103 stage I NSCLC patients and 26 non-cancerous control patients. Results showed that NEUROG2 and NID2 were hypermethylated in stage I NSCLC tissues (31.07 and 46.60%, respectively) and unmethylated in normal lung tissues (0/15) and non-cancerous tissues (0/26). Following recombination, an optimized 5-gene panel (NEUROG2, NID2, RASSF1A, APC and HOXC9) achieved a sensitivity of 91.26% with a specificity of 84.62% in the detection of stage I NSCLC. The optimized 5-gene panel greatly improved the diagnostic power for stage I NSCLC.
doi:10.3892/ol.2012.587
PMCID: PMC3362429  PMID: 22741015
NEUROG2; NID2; DNA methylation; non-small cell lung cancer; stage I
7.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
doi:10.1371/journal.pbio.1000533
PMCID: PMC2976721  PMID: 21085693

Results 1-7 (7)