PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm (Bombyx) 
Science (New York, N.Y.)  2009;326(5951):433-436.
A single–base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ∼16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.
doi:10.1126/science.1176620
PMCID: PMC3951477  PMID: 19713493
2.  The sequence and de novo assembly of the giant panda genome 
Li, Ruiqiang | Fan, Wei | Tian, Geng | Zhu, Hongmei | He, Lin | Cai, Jing | Huang, Quanfei | Cai, Qingle | Li, Bo | Bai, Yinqi | Zhang, Zhihe | Zhang, Yaping | Wang, Wen | Li, Jun | Wei, Fuwen | Li, Heng | Jian, Min | Li, Jianwen | Zhang, Zhaolei | Nielsen, Rasmus | Li, Dawei | Gu, Wanjun | Yang, Zhentao | Xuan, Zhaoling | Ryder, Oliver A. | Leung, Frederick Chi-Ching | Zhou, Yan | Cao, Jianjun | Sun, Xiao | Fu, Yonggui | Fang, Xiaodong | Guo, Xiaosen | Wang, Bo | Hou, Rong | Shen, Fujun | Mu, Bo | Ni, Peixiang | Lin, Runmao | Qian, Wubin | Wang, Guodong | Yu, Chang | Nie, Wenhui | Wang, Jinhuan | Wu, Zhigang | Liang, Huiqing | Min, Jiumeng | Wu, Qi | Cheng, Shifeng | Ruan, Jue | Wang, Mingwei | Shi, Zhongbin | Wen, Ming | Liu, Binghang | Ren, Xiaoli | Zheng, Huisong | Dong, Dong | Cook, Kathleen | Shan, Gao | Zhang, Hao | Kosiol, Carolin | Xie, Xueying | Lu, Zuhong | Zheng, Hancheng | Li, Yingrui | Steiner, Cynthia C. | Lam, Tommy Tsan-Yuk | Lin, Siyuan | Zhang, Qinghui | Li, Guoqing | Tian, Jing | Gong, Timing | Liu, Hongde | Zhang, Dejin | Fang, Lin | Ye, Chen | Zhang, Juanbin | Hu, Wenbo | Xu, Anlong | Ren, Yuanyuan | Zhang, Guojie | Bruford, Michael W. | Li, Qibin | Ma, Lijia | Guo, Yiran | An, Na | Hu, Yujie | Zheng, Yang | Shi, Yongyong | Li, Zhiqiang | Liu, Qing | Chen, Yanling | Zhao, Jing | Qu, Ning | Zhao, Shancen | Tian, Feng | Wang, Xiaoling | Wang, Haiyin | Xu, Lizhi | Liu, Xiao | Vinar, Tomas | Wang, Yajun | Lam, Tak-Wah | Yiu, Siu-Ming | Liu, Shiping | Zhang, Hemin | Li, Desheng | Huang, Yan | Wang, Xia | Yang, Guohua | Jiang, Zhi | Wang, Junyi | Qin, Nan | Li, Li | Li, Jingxiang | Bolund, Lars | Kristiansen, Karsten | Wong, Gane Ka-Shu | Olson, Maynard | Zhang, Xiuqing | Li, Songgang | Yang, Huanming | Wang, Jian | Wang, Jun
Nature  2009;463(7279):311-317.
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
doi:10.1038/nature08696
PMCID: PMC3951497  PMID: 20010809
3.  A human gut microbial gene catalog established by metagenomic sequencing 
Nature  2010;464(7285):59-65.
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million nonredundant microbial genes, derived from 576.7 Gb sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent microbial genes of the cohort and likely includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, suggesting that the entire cohort harbours between 1000 and 1150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions encoded by the gene set.
doi:10.1038/nature08821
PMCID: PMC3779803  PMID: 20203603
4.  Sequencing of Fifty Human Exomes Reveals Adaptation to High Altitude 
Science (New York, N.Y.)  2010;329(5987):75-78.
Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18X per individual. Genes showing population-specific allele frequency changes, which represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from EPAS1, a transcription factor involved in response to hypoxia. One SNP at EPAS1 shows a 78% frequency difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP’s association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus in genetic adaptation to high altitude.
doi:10.1126/science.1190371
PMCID: PMC3711608  PMID: 20595611
5.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
doi:10.1371/journal.pbio.1000533
PMCID: PMC2976721  PMID: 21085693

Results 1-5 (5)