Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq 
Clinical Epigenetics  2014;6(1):18.
Extensive reprogramming and dysregulation of DNA methylation is an important characteristic of pancreatic cancer (PC). Our study aimed to characterize the genomic methylation patterns in various genomic contexts of PC. The methyl capture sequencing (methylCap-seq) method was used to map differently methylated regions (DMRs) in pooled samples from ten PC tissues and ten adjacent non-tumor (PN) tissues. A selection of DMRs was validated in an independent set of PC and PN samples using methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), and methylation sensitive restriction enzyme-based qPCR (MSRE-qPCR). The mRNA and expressed sequence tag (EST) expression of the corresponding genes was investigated using RT-qPCR.
A total of 1,131 PC-specific and 727 PN-specific hypermethylated DMRs were identified in association with CpG islands (CGIs), including gene-associated CGIs and orphan CGIs; 2,955 PC-specific and 2,386 PN-specific hypermethylated DMRs were associated with gene promoters, including promoters containing or lacking CGIs. Moreover, 1,744 PC-specific and 1,488 PN-specific hypermethylated DMRs were found to be associated with CGIs or CGI shores. These results suggested that aberrant hypermethylation in PC typically occurs in regions surrounding the transcription start site (TSS). The BSP, MSP, MSRE-qPCR, and RT-qPCR data indicated that the aberrant DNA methylation in PC tissue and in PC cell lines was associated with gene (or corresponding EST) expression.
Our study characterized the genome-wide DNA methylation patterns in PC and identified DMRs that were distributed among various genomic contexts that might influence the expression of corresponding genes or transcripts to promote PC. These DMRs might serve as diagnostic biomarkers or therapeutic targets for PC.
PMCID: PMC4177372  PMID: 25276247
CGI shore; DNA methylation; genome-wide; methyl capture sequencing; orphan CGI; pancreatic adenocarcinoma
2.  Abnormal methylation of seven genes and their associations with clinical characteristics in early stage non-small cell lung cancer 
Oncology Letters  2013;5(4):1211-1218.
To identify novel abnormally methylated genes in early stage non-small cell lung cancer (NSCLC), we analyzed the methylation status of 13 genes (ALX1, BCL2, FOXL2, HPP1, MYF6, OC2, PDGFRA, PHOX2A, PITX2, RARB, SIX6, SMPD3 and SOX1) in cancer tissues from 101 cases of stage I NSCLC patients and lung tissues from 30 cases of non-cancerous lung disease controls, using methylation-specific PCR (MSP). The methylation frequencies (29.70–64.36%) of 7 genes (MYF6, SIX6, SOX1, RARB, BCL2, PHOX2A and FOLX2) in stage I NSCLC were significantly higher compared with those in non-cancerous lung disease controls (P<0.05). The co-methylation of SIX6 and SOX1, or the co-methyaltion of SIX6, RARB and SOX1 was associated with adenosquamous carcinoma (ADC), and the co-methylation of BCL2, RARB and SIX6 was associated with smoking. A panel of 4 genes (MYF6, SIX6, BCL2 and RARB) may offer a sensitivity of 93.07% and a specificity of 83.33% in the diagnosis of stage I NSCLC. Furthermore, we also detected the expression of 8 pathological markers (VEGF, HER-2, P53, P21, EGFR, CHGA, SYN and EMA) in cancer tissues of stage I NSCLC by immunohistochemistry, and found that high expression levels of p53 and CHGA were associated with the methylation of BCL2 (P=0.025) and PHOX2A (P=0.023), respectively. In this study, among the 7 genes which demonstrated hypermethylation in stage I NSCLC compared with non-cancerous lung diseases, 5 genes (MYF6, SIX6, PHOX2A, FOLX2 and SOX1) were found for the first time to be abonormally methylated in NSCLC. Further study of these genes shed light on the carcinogenesis of NSCLC.
PMCID: PMC3629069  PMID: 23599765
DNA methylation; non-small cell lung cancer; stage I; smoking
3.  Methylcap-Seq Reveals Novel DNA Methylation Markers for the Diagnosis and Recurrence Prediction of Bladder Cancer in a Chinese Population 
PLoS ONE  2012;7(4):e35175.
There is a need to supplement or supplant the conventional diagnostic tools, namely, cystoscopy and B-type ultrasound, for bladder cancer (BC). We aimed to identify novel DNA methylation markers for BC through genome-wide profiling of BC cell lines and subsequent methylation-specific PCR (MSP) screening of clinical urine samples.
Experimental Design
The methyl-DNA binding domain (MBD) capture technique, methylCap/seq, was performed to screen for specific hypermethylated CpG islands in two BC cell lines (5637 and T24). The top one hundred hypermethylated targets were sequentially screened by MSP in urine samples to gradually narrow the target number and optimize the composition of the diagnostic panel. The diagnostic performance of the obtained panel was evaluated in different clinical scenarios.
A total of 1,627 hypermethylated promoter targets in the BC cell lines was identified by Illumina sequencing. The top 104 hypermethylated targets were reduced to eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A) after the urine DNA screening in a small sample size of 8 normal control and 18 BC subjects. Validation in an independent sample of 212 BC patients enabled the optimization of five methylation targets, including VAX1, KCNV1, TAL1, PPOX1, and CFTR, which was obtained in our previous study, for BC diagnosis with a sensitivity and specificity of 88.68% and 87.25%, respectively. In addition, the methylation of VAX1 and LMX1A was found to be associated with BC recurrence.
We identified a promising diagnostic marker panel for early non-invasive detection and subsequent BC surveillance.
PMCID: PMC3328468  PMID: 22529986
4.  Methylation status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC 
Oncology Letters  2012;3(4):901-906.
In our previous study, we attempted to develop a tool for the early diagnosis of non-small cell lung cancer (NSCLC) using DNA methylation biomarkers. With the aim of improving the diagnostic potential by optimizing the composition of the target set, in this study, 13 candidate genes (ACTA1, AIDH1A2, CBX8, CDH8, EVX1, MGC16275, NEUROG1, NEUROG2, NID2, OTX2OS1, PGAM2, PHOX2B and TOX) were analyzed by methylation-specific PCR to determine the methylation status of each gene in 5 NSCLC cell lines and in lung tissue samples from 15 healthy volunteers, 103 stage I NSCLC patients and 26 non-cancerous control patients. Results showed that NEUROG2 and NID2 were hypermethylated in stage I NSCLC tissues (31.07 and 46.60%, respectively) and unmethylated in normal lung tissues (0/15) and non-cancerous tissues (0/26). Following recombination, an optimized 5-gene panel (NEUROG2, NID2, RASSF1A, APC and HOXC9) achieved a sensitivity of 91.26% with a specificity of 84.62% in the detection of stage I NSCLC. The optimized 5-gene panel greatly improved the diagnostic power for stage I NSCLC.
PMCID: PMC3362429  PMID: 22741015
NEUROG2; NID2; DNA methylation; non-small cell lung cancer; stage I
5.  Investigation of Spectroscopic Properties and Spin-Orbit Splitting in the X2Π and A2Π Electronic States of the SO+ Cation 
The potential energy curves (PECs) of the X2Π and A2Π electronic states of the SO+ ion are calculated using the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction (MRCI) approach for internuclear separations from 0.08 to 1.06 nm. The spin-orbit coupling effect on the spectroscopic parameters is included using the Breit-Pauli operator. To improve the quality of PECs and spin-orbit coupling constant (A0), core-valence correlation and scalar relativistic corrections are included. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). At the MRCI+Q/aug-cc-pV5Z+CV+DK level, the A0 values of the SO+(X2Π1/2, 3/2) and SO+(A2Π1/2, 3/2) are 362.13 and 58.16 cm−1 when the aug-cc-pCVTZ basis set is used to calculate the spin-orbit coupling splitting, and the A0 of the SO+(X2Π1/2, 3/2) and SO+(A2Π1/2, 3/2) are 344.36 and 52.90 cm−1 when the aug-cc-pVTZ basis set is used to calculate the spin-orbit coupling splitting. The conclusion is drawn that the core-valence correlations correction makes the A0 slightly larger. The spectroscopic results are obtained and compared with those reported in the literature. Excellent agreement exists between the present results and the measurements. The vibrational manifolds are calculated, and those of the first 30 vibrational states are reported for the J = 0 case. Comparison with the measurements shows that the present vibrational manifolds are both reliable and accurate.
PMCID: PMC3430229  PMID: 22942698
potential energy curve; spin-orbit coupling; spectroscopic parameter; scalar relativistic correction; core-valence correlation correction
6.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
PMCID: PMC2976721  PMID: 21085693
7.  Stereodynamics Study of the Reaction of O(3P) with CH4 (v = 0, j = 0) 
A new London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES) is used in the O + CH4 → OH + CH3 reaction via the quasiclassical trajectory method (QCT). Comparing with the experiments and the former ab initio calculations, the new LEPS PES describes the actual potential energy surface of the O + CH4 reaction successfully. The four polarization dependent “generalized” differential cross sections (PDDCS) are presented in the center of mass frame. In the meantime, the distribution of dihedral angle [P(φr), the distribution of angle between k and j′ (P(θr)] and the angular distribution of product rotational vectors in the form of polar plots in θr and φr (P(θr, φr) are calculated. The isotope effect for the reactions O + CD4 is also calculated. These results are in good agreement with the experiments.
PMCID: PMC2695273  PMID: 19564945
quasiclassical trajectory; potential barrier; polarization; isotope effect

Results 1-7 (7)