PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (66)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Association of Common Genetic Variants with Lipid Traits in the Indian Population 
PLoS ONE  2014;9(7):e101688.
Genome-wide association studies (GWAS) have been instrumental in identifying novel genetic variants associated with altered plasma lipid levels. However, these quantitative trait loci have not been tested in the Indian population, where there is a poorly understood and growing burden of cardiometabolic disorders. We present the association of six single nucleotide polymorphisms in 1671 sib pairs (3342 subjects) with four lipid traits: total cholesterol, triglycerides, high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). We also investigated the interaction effects of gender, location, fat intake and physical activity. Each copy of the risk allele of rs964184 at APOA1 was associated with 1.06 mmol/l increase in triglycerides (SE = 0.049; p = 0.006), rs3764261 at CETP with 1.02 mmol/l increase in both total cholesterol (SE = 0.042; p = 0.017) and HDL-C (SE = 0.041; p = 0.008), rs646776 at CELSR2-PSRC1-SORT1 with 0.96 mmol/l decrease in cholesterol (SE = 0.043; p = 0.0003) and 0.15 mmol/l decrease in LDL-C levels (SE = 0.043; p = 0.0003) and rs2954029 at TRIB1 with 1.02 mmol/l increase in HDL-C (SE = 0.039; p = 0.047). A combined risk score of APOA1 and CETP loci predicted an increase of 1.25 mmol/l in HDL-C level (SE = 0.312; p = 0.0007). Urban location and sex had strong interaction effects on the genetic association of most of the studied loci with lipid traits. To conclude, we validated four genetic variants (identified by GWAS in western populations) associated with lipid traits in the Indian population. The interaction effects found here may explain the sex-specific differences in lipid levels and their heritability. Urbanization appears to influence the nature of the association with GWAS lipid loci in this population. However, these findings will require replication in other Indian populations.
doi:10.1371/journal.pone.0101688
PMCID: PMC4081649  PMID: 24991929
2.  Identification of Susceptibility Variants in ADIPOR1 Gene Associated with Type 2 Diabetes, Coronary Artery Disease and the Comorbidity of Type 2 Diabetes and Coronary Artery Disease 
PLoS ONE  2014;9(6):e100339.
Objective
Adiponectin receptor 1 (encoded by ADIPOR1) is one of the major adiponectin receptors, and plays an important role in glucose and lipid metabolism. However, few studies have reported simultaneous associations between ADIPOR1 variants and type 2 diabetes (T2D), coronary artery disease (CAD) and T2D with CAD. Based on the “common soil” hypothesis, we investigated whether ADIPOR1 polymorphisms contributed to the etiology of T2D, CAD, or T2D with CAD in a Northern Han Chinese population.
Methods
Our multi-disease comparison study enrolled 657 subjects, including 165 with T2D, 173 with CAD, 174 with both T2D and CAD (T2D+CAD), and 145 local healthy controls. Six ADIPOR1 single nucleotide polymorphisms (SNPs) were genotyped and their association with disease risk was analyzed.
Results
Multi-case-control comparison identified two ADIPOR1 variants: rs3737884-G, which was simultaneously associated with an increased risk of T2D, CAD, and T2D+CAD (P-value range, 9.80×10−5−6.30×10−4; odds ratio (OR) range: 1.96–2.42) and 16850797-C, which was separately associated with T2D and T2D+CAD (P-value range: 0.007–0.014; OR range: 1.71–1.77). The risk genotypes of both rs3737884 and 16850797 were consistently associated with common metabolic phenotypes in all three diseases (P-value range: 4.81×10−42−0.001). We observed an increase in the genetic dose-dependent cumulative risk with increasing risk allele numbers in T2D, CAD and T2D+CAD (P trend from 1.35×10−5−0.002).
Conclusions
Our results suggest that ADIPOR1 risk polymorphisms are a strong candidate for the “common soil” hypothesis and could partially contribute to disease susceptibility to T2D, CAD, and T2D with CAD in the Northern Han Chinese population.
doi:10.1371/journal.pone.0100339
PMCID: PMC4072681  PMID: 24967709
3.  Statistical tests for detecting associations with groups of genetic variants: generalization, evaluation, and implementation 
With recent advances in sequencing, genotyping arrays, and imputation, GWAS now aim to identify associations with rare and uncommon genetic variants. Here, we describe and evaluate a class of statistics, generalized score statistics (GSS), that can test for an association between a group of genetic variants and a phenotype. GSS are a simple weighted sum of single-variant statistics and their cross-products. We show that the majority of statistics currently used to detect associations with rare variants are equivalent to choosing a specific set of weights within this framework. We then evaluate the power of various weighting schemes as a function of variant characteristics, such as MAF, the proportion associated with the phenotype, and the direction of effect. Ultimately, we find that two classical tests are robust and powerful, but details are provided as to when other GSS may perform favorably. The software package CRaVe is available at our website (http://dceg.cancer.gov/bb/tools/crave).
doi:10.1038/ejhg.2012.220
PMCID: PMC3658182  PMID: 23092956
rare variants; score test; GWAS; association test
4.  DNA Methylation in an Enhancer Region of the FADS Cluster Is Associated with FADS Activity in Human Liver 
PLoS ONE  2014;9(5):e97510.
Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20∶4, n-6), eicosapentaenoic acid (EPA; 20∶5, n-3) and docosahexaenoic acid (DHA; 22∶6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18∶2, n-6) to AA and α-linolenic acid (ALA, 18∶3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5′ to 5′) in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95×10−46) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.
doi:10.1371/journal.pone.0097510
PMCID: PMC4026313  PMID: 24842322
5.  Novel and Recurrent MYO7A Mutations in Usher Syndrome Type 1 and Type 2 
PLoS ONE  2014;9(5):e97808.
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.
doi:10.1371/journal.pone.0097808
PMCID: PMC4022727  PMID: 24831256
6.  Genetic Influences on Hand Osteoarthritis in Finnish Women – A Replication Study of Candidate Genes 
PLoS ONE  2014;9(5):e97417.
Objectives
Our aims were to replicate some previously reported associations of single nucleotide polymorphisms (SNPs) in five genes (A2BP1, COG5, GDF5, HFE, ESR1) with hand osteoarthritis (OA), and to examine whether genes (BCAP29, DIO2, DUS4L, DVWA, HLA, PTGS2, PARD3B, TGFB1 and TRIB1) associated with OA at other joint sites were associated with hand OA among Finnish women.
Design
We examined the bilateral hand radiographs of 542 occupationally active Finnish female dentists and teachers aged 45 to 63 and classified them according to the presence of OA by using reference images. Data regarding finger joint pain and other risk factors were collected using a questionnaire. We defined two hand OA phenotypes: radiographic OA in at least three joints (ROA) and symptomatic DIP OA. The genotypes were determined by PCR-based methods. In statistical analysis, we used SNPStats software, the chi-square test and logistic regression.
Results
Of the SNPs, rs716508 in A2BP1 was associated with ROA (OR = 0.7, 95% CI 0.5–0.9) and rs1800470 in TGFB1 with symptomatic DIP OA (1.8, 1.2–2.9). We found an interaction between ESR1 (rs9340799) and occupation: teachers with the minor allele were at an increased risk of symptomatic DIP OA (2.8, 1.3–6.5). We saw no association among the dentists. We also found that the carriage of the COG5 rs3757713 C allele increased the risk of ROA only among women with the BCAP29 rs10953541 CC genotype (2.6; 1.1–6.1). There was also a suggestive interaction between the HFE rs179945 and the ESR1 rs9340799, and the carriage of the minor allele of either of these SNPs was associated with an increased risk of symptomatic DIP OA (2.1, 1.3–2.5).
Conclusions
Our results support the earlier findings of A2BP1 and TBGF1 being OA susceptibility genes and provide evidence of a possible gene-gene interaction in the genetic influence on hand OA predisposition.
doi:10.1371/journal.pone.0097417
PMCID: PMC4019597  PMID: 24825461
7.  The SLE Transcriptome Exhibits Evidence of Chronic Endotoxin Exposure and Has Widespread Dysregulation of Non-Coding and Coding RNAs 
PLoS ONE  2014;9(5):e93846.
Background
Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE.
Methods
Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA.
Results
We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients.
Conclusions
Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.
doi:10.1371/journal.pone.0093846
PMCID: PMC4010412  PMID: 24796678
8.  Size-Based Enrichment of Exfoliated Tumor Cells in Urine Increases the Sensitivity for DNA-Based Detection of Bladder Cancer 
PLoS ONE  2014;9(4):e94023.
Bladder cancer is diagnosed by cystoscopy, a costly and invasive procedure that is associated with patient discomfort. Analysis of tumor-specific markers in DNA from sediments of voided urine has the potential for non-invasive detection of bladder cancer; however, the sensitivity is limited by low fractions and small numbers of tumor cells exfoliated into the urine from low-grade tumors. The purpose of this study was to improve the sensitivity for non-invasive detection of bladder cancer by size-based capture and enrichment of tumor cells in urine. In a split-sample set-up, urine from a consecutive series of patients with primary or recurrent bladder tumors (N = 189) was processed by microfiltration using a membrane filter with a defined pore-size, and sedimentation by centrifugation, respectively. DNA from the samples was analyzed for seven bladder tumor-associated methylation markers using MethyLight and pyrosequencing assays. The fraction of tumor-derived DNA was higher in the filter samples than in the corresponding sediments for all markers (p<0.000001). Across all tumor stages, the number of cases positive for one or more markers was 87% in filter samples compared to 80% in the corresponding sediments. The largest increase in sensitivity was achieved in low-grade Ta tumors, with 82 out of 98 cases positive in the filter samples (84%) versus 74 out of 98 in the sediments (75%). Our results show that pre-analytic processing of voided urine by size-based filtration can increase the sensitivity for DNA-based detection of bladder cancer.
doi:10.1371/journal.pone.0094023
PMCID: PMC3986060  PMID: 24732047
9.  Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer 
Cancer research  2013;73(7):2211-2220.
Bladder cancer results from the combined effects of environmental and genetic factors, smoking being the strongest risk factor. Evaluating absolute risks resulting from the joint effects of smoking and genetic factors is critical to evaluate the public health relevance of genetic information. Analyses included up to 3,942 cases and 5,680 controls of European background in seven studies. We tested for multiplicative and additive interactions between smoking and 12 susceptibility loci, individually and combined as a polygenic risk score (PRS). Thirty-year absolute risks and risk differences by levels of the PRS were estimated for US-males aged 50-years. Six out of 12 variants showed significant additive gene-environment interactions, most notably NAT2 (P=7×10-4) and UGT1A6 (P=8×10-4). The 30-year absolute risk of bladder cancer in US males was 6.2% for all current smokers. This risk ranged from 2.9% for current smokers in the lowest quartile of the PRS to 9.9% for current smokers in the upper quartile. Risk difference estimates indicated that 8,200 cases would be prevented if elimination of smoking occurred in 100,000 men in the upper PRS quartile, compared to 2,000 cases prevented by a similar effort in the lowest PRS quartile (P-additive =1×10-4). The impact of eliminating smoking the on number of bladder cancer cases prevented is larger for individuals at higher than lower genetic risk. Our findings could have implications for targeted prevention strategies. However, other smoking-related diseases, as well as practical and ethical considerations, need to be considered before any recommendations could be made.
doi:10.1158/0008-5472.CAN-12-2388
PMCID: PMC3688270  PMID: 23536561
10.  Admixture Fine-Mapping in African Americans Implicates XAF1 as a Possible Sarcoidosis Risk Gene 
PLoS ONE  2014;9(3):e92646.
Sarcoidosis is a complex, multi-organ granulomatous disease with a likely genetic component. West African ancestry confers a higher risk for sarcoidosis than European ancestry. Admixture mapping provides the most direct method to locate genes that underlie such ethnic variation in disease risk. We sought to identify genetic risk variants within four previously-identified ancestry-associated regions—6p24.3–p12.1, 17p13.3–13.1, 2p13.3–q12.1, and 6q23.3–q25.2—in a sample of 2,727 African Americans. We used logistic regression fit by generalized estimating equations and the MIX score statistic to determine which variants within ancestry-associated regions were associated with risk and responsible for the admixture signal. Fine mapping was performed by imputation, based on a previous genome-wide association study; significant variants were validated by direct genotyping. Within the 6p24.3–p12.1 locus, the most significant ancestry-adjusted SNP was rs74318745 (p = 9.4*10−11), an intronic SNP within the HLA-DRA gene that did not solely explain the admixture signal, indicating the presence of more than a single risk variant within this well-established sarcoidosis risk region. The locus on chromosome 17p13.3–13.1 revealed a novel sarcoidosis risk SNP, rs6502976 (p = 9.5*10−6), within intron 5 of the gene X-linked Inhibitor of Apoptosis Associated Factor 1 (XAF1) that accounted for the majority of the admixture linkage signal. Immunohistochemical expression studies demonstrated lack of expression of XAF1 and a corresponding high level of expression of its downstream target, X-linked Inhibitor of Apoptosis (XIAP) in sarcoidosis granulomas. In conclusion, ancestry and association fine mapping revealed a novel sarcoidosis susceptibility gene, XAF1, which has not been identified by previous genome-wide association studies. Based on the known biology of the XIAP/XAF1 apoptosis pathway and the differential expression patterns of XAF1 and XIAP in sarcoidosis granulomas, we suggest that this pathway may play a role in the maintenance of sarcoidosis granulomas.
doi:10.1371/journal.pone.0092646
PMCID: PMC3963923  PMID: 24663488
11.  Pleiotropy of Cancer Susceptibility Variants on the Risk of Non-Hodgkin Lymphoma: The PAGE Consortium 
PLoS ONE  2014;9(3):e89791.
Background
Risk of non-Hodgkin lymphoma (NHL) is higher among individuals with a family history or a prior diagnosis of other cancers. Genome-wide association studies (GWAS) have suggested that some genetic susceptibility variants are associated with multiple complex traits (pleiotropy).
Objective
We investigated whether common risk variants identified in cancer GWAS may also increase the risk of developing NHL as the first primary cancer.
Methods
As part of the Population Architecture using Genomics and Epidemiology (PAGE) consortium, 113 cancer risk variants were analyzed in 1,441 NHL cases and 24,183 controls from three studies (BioVU, Multiethnic Cohort Study, Women's Health Initiative) for their association with the risk of overall NHL and common subtypes [diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL)] using an additive genetic model adjusted for age, sex and ethnicity. Study-specific results for each variant were meta-analyzed across studies.
Results
The analysis of NHL subtype-specific GWAS SNPs and overall NHL suggested a shared genetic susceptibility between FL and DLBCL, particularly involving variants in the major histocompatibility complex region (rs6457327 in 6p21.33: FL OR = 1.29, p = 0.013; DLBCL OR = 1.23, p = 0.013; NHL OR = 1.22, p = 5.9×E-05). In the pleiotropy analysis, six risk variants for other cancers were associated with NHL risk, including variants for lung (rs401681 in TERT: OR per C allele = 0.89, p = 3.7×E-03; rs4975616 in TERT: OR per A allele = 0.90, p = 0.01; rs3131379 in MSH5: OR per T allele = 1.16, p = 0.03), prostate (rs7679673 in TET2: OR per C allele = 0.89, p = 5.7×E-03; rs10993994 in MSMB: OR per T allele = 1.09, p = 0.04), and breast (rs3817198 in LSP1: OR per C allele = 1.12, p = 0.01) cancers, but none of these associations remained significant after multiple test correction.
Conclusion
This study does not support strong pleiotropic effects of non-NHL cancer risk variants in NHL etiology; however, larger studies are warranted.
doi:10.1371/journal.pone.0089791
PMCID: PMC3943855  PMID: 24598796
12.  Expression and Replication Studies to Identify New Candidate Genes Involved in Normal Hearing Function 
PLoS ONE  2014;9(1):e85352.
Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment.
doi:10.1371/journal.pone.0085352
PMCID: PMC3891868  PMID: 24454846
13.  HLA-DQB1*03 Confers Susceptibility to Chronic Hepatitis C in Japanese: A Genome-Wide Association Study 
PLoS ONE  2013;8(12):e84226.
Hepatitis C virus (HCV) establishes a chronic infection in 70-80% of infected individuals. Many researchers have examined the effect of human leukocyte antigen (HLA) on viral persistence because of its critical role in the immune response against exposure to HCV, but almost all studies have proven to be inconclusive. To identify genetic risk factors for chronic HCV infection, we analyzed 458,207 single nucleotide polymorphisms (SNPs) in 481 chronic HCV patients and 2,963 controls in a Japanese cohort. Next, we performed a replication study with an independent panel of 4,358 cases and 1,114 controls. We further confirmed the association in 1,379 cases and 25,817 controls. In the GWAS phase, we found 17 SNPs that showed suggestive association (P < 1 × 10-5). After the first replication study, we found one intronic SNP in the HLA-DQ locus associated with chronic HCV infection, and when we combined the two studies, the association reached the level of genome-wide significance. In the second replication study, we again confirmed the association (Pcombined = 3.59 × 10−16, odds ratio [OR] = 0.79). Subsequent analysis revealed another SNP, rs1130380, with a stronger association (OR=0.72). This nucleotide substitution causes an amino acid substitution (R55P) in the HLA-DQB1 protein specific to the DQB1*03 allele, which is common worldwide. In addition, we confirmed an association with the previously reported IFNL3-IFNL4 locus and propose that the effect of DQB1*03 on HCV persistence might be affected by the IFNL4 polymorphism. Our findings suggest that a common amino acid substitution in HLA-DQB1 affects susceptibility to chronic infection with HCV in the Japanese population and may not be independent of the IFNL4 genotype.
doi:10.1371/journal.pone.0084226
PMCID: PMC3871580  PMID: 24376798
14.  Utilizing Twins as Controls for Non-Twin Case-Materials in Genome Wide Association Studies 
PLoS ONE  2013;8(12):e83101.
Twin registries around the globe have collected DNA samples from large numbers of monozygotic and dizygotic twins. The twin sample collections are frequently used as controls in disease-specific studies together with non-twins. This approach is unbiased under the hypothesis that twins and singletons are comparable in terms of allele frequencies; i.e. there are no genetic variants associated with being a twin per se. To test this hypothesis we performed a genome-wide association study comparing the allele frequency of 572,352 single nucleotide polymorphisms (SNPs) in 1,413 monozygotic (MZ) and 5,451 dizygotic (DZ) twins with 3,720 healthy singletons. Twins and singletons have been genotyped using the same platform. SNPs showing association with being a twin at P-value < 1 × 10-5 were selected for replication analysis in 1,492 twins (463 MZ and 1,029 DZ) and 1,880 singletons from Finland. No SNPs reached genome-wide significance (P-value < 5 × 10-8) in the main analysis combining MZ and DZ twins. In a secondary analysis including only DZ twins two SNPs (rs2033541 close to ADAMTSL1 and rs4149283 close to ABCA1) were genome-wide significant after meta-analysis with the Finnish population. The estimated proportion of variance on the liability scale explained by all SNPs was 0.08 (P-value=0.003) when MZ and DZ were considered together and smaller for MZ (0.06, P-value=0.10) compared to DZ (0.09, P-value=0.003) when analyzed separately. In conclusion, twins and singletons can be used in genetic studies together with general population samples without introducing large bias. Further research is needed to explore genetic variances associated with DZ twinning.
doi:10.1371/journal.pone.0083101
PMCID: PMC3858365  PMID: 24340086
15.  Genome-Wide Association Study for Levels of Total Serum IgE Identifies HLA-C in a Japanese Population 
PLoS ONE  2013;8(12):e80941.
Most of the previously reported loci for total immunoglobulin E (IgE) levels are related to Th2 cell-dependent pathways. We undertook a genome-wide association study (GWAS) to identify genetic loci responsible for IgE regulation. A total of 479,940 single nucleotide polymorphisms (SNPs) were tested for association with total serum IgE levels in 1180 Japanese adults. Fine-mapping with SNP imputation demonstrated 6 candidate regions: the PYHIN1/IFI16, MHC classes I and II, LEMD2, GRAMD1B, and chr13∶60576338 regions. Replication of these candidate loci in each region was assessed in 2 independent Japanese cohorts (n = 1110 and 1364, respectively). SNP rs3130941 in the HLA-C region was consistently associated with total IgE levels in 3 independent populations, and the meta-analysis yielded genome-wide significance (P = 1.07×10−10). Using our GWAS results, we also assessed the reproducibility of previously reported gene associations with total IgE levels. Nine of 32 candidate genes identified by a literature search were associated with total IgE levels after correction for multiple testing. Our findings demonstrate that SNPs in the HLA-C region are strongly associated with total serum IgE levels in the Japanese population and that some of the previously reported genetic associations are replicated across ethnic groups.
doi:10.1371/journal.pone.0080941
PMCID: PMC3851760  PMID: 24324648
16.  IL-29 Is the Dominant Type III Interferon Produced by Hepatocytes During Acute Hepatitis C Virus Infection 
Hepatology (Baltimore, Md.)  2012;56(6):2060-2070.
Early, vigorous intrahepatic induction of interferon (IFN)-stimulated gene (ISG) induction is a feature of hepatitis C virus (HCV) infection, even though HCV inhibits the induction of type I IFNs in vitro. To identify the cytokines and cells that drive ISG induction and mediate antiviral activity during acute HCV infection, type I and III IFN responses were studied in (1) serial liver biopsies and plasma samples obtained from 6 chimpanzees throughout acute HCV infection and (2) primary human hepatocyte (PHH) cultures upon HCV infection. Type I IFNs were minimally induced at the messenger RNA (mRNA) level in the liver and were undetectable at the protein level in plasma during acute HCV infection of chimpanzees. In contrast, type III IFNs, in particular, interleukin (IL)-29 mRNA and protein, were strongly induced and these levels correlated with ISG expression and viremia. However, there was no association between intrahepatic or peripheral type III IFN levels and the outcome of acute HCV infection. Infection of PHH with HCV recapitulated strong type III and weak type I IFN responses. Supernatants from HCV-infected PHH cultures mediated antiviral activity upon transfer to HCV-replicon–containing cells. This effect was significantly reduced by neutralization of type III IFNs and less by neutralization of type I IFNs. Furthermore, IL-29 production by HCV-infected PHH occurred independently from type I IFN signaling and was not enhanced by the presence of plasmacytoid dendritic cells.
Conclusion
Hepatocyte-derived type III IFNs contribute to ISG induction and antiviral activity, but are not the principal determinant of the outcome of HCV infection.
doi:10.1002/hep.25897
PMCID: PMC3581145  PMID: 22706965
17.  Parental Smoking and Risk of Childhood Brain Tumors by Functional Polymorphisms in Polycyclic Aromatic Hydrocarbon Metabolism Genes 
PLoS ONE  2013;8(11):e79110.
Background
A recent meta-analysis suggested an association between exposure to paternal smoking during pregnancy and childhood brain tumor risk, but no studies have evaluated whether this association differs by polymorphisms in genes that metabolize tobacco-smoke chemicals.
Methods
We assessed 9 functional polymorphisms in 6 genes that affect the metabolism of polycyclic aromatic hydrocarbons (PAH) to evaluate potential interactions with parental smoking during pregnancy in a population-based case-control study of childhood brain tumors. Cases (N = 202) were ≤10 years old, diagnosed from 1984–1991 and identified in three Surveillance, Epidemiology, and End Results (SEER) registries in the western U.S. Controls in the same regions (N = 286) were frequency matched by age, sex, and study center. DNA for genotyping was obtained from archived newborn dried blood spots.
Results
We found positive interaction odds ratios (ORs) for both maternal and paternal smoking during pregnancy, EPHX1 H139R, and childhood brain tumors (Pinteraction = 0.02; 0.10), such that children with the high-risk (greater PAH activation) genotype were at a higher risk of brain tumors relative to children with the low-risk genotype when exposed to tobacco smoke during pregnancy. A dose-response pattern for paternal smoking was observed among children with the EPHX1 H139R high-risk genotype only (ORno exposure = 1.0; OR≤3 hours/day = 1.32, 95% CI: 0.52–3.34; OR>3hours/day = 3.18, 95% CI: 0.92–11.0; Ptrend = 0.07).
Conclusion
Parental smoking during pregnancy may be a risk factor for childhood brain tumors among genetically susceptible children who more rapidly activate PAH in tobacco smoke.
doi:10.1371/journal.pone.0079110
PMCID: PMC3832498  PMID: 24260161
18.  A variant upstream of IFNL3 (IL28B) creating a novel interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus 
Nature genetics  2013;45(2):164-171.
SUMMARY
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA-sequencing in primary human hepatocytes activated with synthetic dsRNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a novel, transiently induced region that harbors dinucleotide variant ss469415590 (TT/ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590-ΔG is a frame-shift variant that creates a novel primate-specific gene, designated interferon lambda 4 (IFNL4), which encodes a protein of moderate similarity with IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, whereas it provides comparable information in Europeans and Asians. Transient over-expression of IFNL4 in a hepatoma cell line induced STAT1/STAT2 phosphorylation and expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.
doi:10.1038/ng.2521
PMCID: PMC3793390  PMID: 23291588
19.  Interaction between γ-Aminobutyric Acid A Receptor Genes: New Evidence in Migraine Susceptibility 
PLoS ONE  2013;8(9):e74087.
Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE, GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls. We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41; 95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88, p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more effective treatments.
doi:10.1371/journal.pone.0074087
PMCID: PMC3764027  PMID: 24040174
20.  Genetic Variation in PSCA and Risk of Gastric Advanced Preneoplastic Lesions and Cancer in Relation to Helicobacter pylori Infection 
PLoS ONE  2013;8(9):e73100.
SNPs in the Prostate Stem Cell Antigen (PSCA) gene have been found associated with gastric cancer (GC) risk in a genome-wide association study. This association has been replicated in several populations. In this study we assessed the impact of PSCA genotype on the risk of advanced gastric precancerous lesions and GC. We used baseline gastric histopathology data and DNA from frozen gastric biopsies of 2045 subjects enrolled in a chemoprevention trial for gastric precancerous lesions in Venezuela, and 180 cases of GC from the same area. We analyzed 3 SNPs in the PSCA gene (rs2294008, rs9297976 and rs12155758) which were previously found to be associated with GC risk in Europeans. The T allele of rs2294008 was found to be associated with a higher prevalence of atrophic gastritis (OR = 1.44; 95% CI 1.03–2.01 for the dominant model) and intestinal metaplasia (OR = 1.50; 95% CI 1.13–1.98 for the dominant model). We also confirmed the association with higher risk of gastric cancer (OR = 2.34; 95% CI 1.36–4.01 for the allele carriers). SNP rs12155758 was not associated with risk of gastric preneoplastic lesions, but we confirmed its association with higher GC risk (OR 1.95; 95% CI 1.29–2.97 for dominant model). We tested the relevance of the presence of the Helicobacter pylori cagA gene, which is known to increase the risk of more severe gastric lesions, but we did not find any clearcut interaction with PSCA SNPs in defining risk of gastric precancerous lesions or cancer.
doi:10.1371/journal.pone.0073100
PMCID: PMC3762831  PMID: 24023815
21.  NDST4 Is a Novel Candidate Tumor Suppressor Gene at Chromosome 4q26 and Its Genetic Loss Predicts Adverse Prognosis in Colorectal Cancer 
PLoS ONE  2013;8(6):e67040.
Background
Genomic deletion at tumor suppressor loci is a common genetic aberration in human cancers. The study aimed to explore candidate tumor suppressor genes at chromosome 4q25-q28.2 and to delineate novel prognostic biomarkers associated with colorectal cancer (CRC).
Methods
Deletion mapping of chromosome 4q25-q28.2 was conducted in 114 sporadic CRC by loss of heterozygosity study with 11 microsatellite markers. A novel candidate tumor suppressor gene, namely NDST4, was identified at 4q26. Gene expression of NDST4 was investigated in 52 pairs of primary CRC tissues by quantitative reverse transcription-polymerase chain reaction. Allelic loss of NDST4 gene was further determined in 174 colorectal carcinomas by loss of heterozygosity analysis, and then was assessed for clinical relevance.
Results
One minimal deletion region was delineated between D4S2297 and D4S2303 loci at 4q26, where NDST4 was the only gene that had markedly been downregulated in CRC tumors. By laser capture microdissection, NDST4 RNA expression was demonstrated in colonic epithelial cells, but was undetectable in tumor cells. In total, 30 (57.7%) of 52 colorectal carcinomas showed a dramatic reduction in NDST4 gene expression compared with matched normal mucosae. The genetic loss of NDST4 was significantly associated with advanced pathological stage (P = 0.039) and poorer overall survival of patients (P = 0.036).
Conclusions
NDST4 gene is a novel candidate tumor suppressor gene in human cancer, and the loss of its function might be involved in CRC progression. In addition, the loss of heterozygosity assay, which was established to determine the allelic loss of NDST4 gene, could be a cost-effective tool for providing a useful biomarker of adverse prognosis in CRC.
doi:10.1371/journal.pone.0067040
PMCID: PMC3692540  PMID: 23825612
22.  A Multiethnic Replication Study of Plasma Lipoprotein Levels-Associated SNPs Identified in Recent GWAS 
PLoS ONE  2013;8(5):e63469.
Genome-wide association studies (GWAS) have identified a number of loci/SNPs associated with plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels. The purpose of this study was to replicate 40 recent GWAS-identified HDL-C-related new loci in 3 epidemiological samples comprising U.S. non-Hispanic Whites (NHWs), U.S. Hispanics, and African Blacks. In each sample, the association analyses were performed with all 4 major lipid traits regardless of previously reported specific associations with selected SNPs. A total of 22 SNPs showed nominally significant association (p<0.05) with at least one lipid trait in at least one ethnic group, although not always with the same lipid traits reported as genome-wide significant in the original GWAS. The total number of significant loci was 10 for TC, 12 for LDL-C, 10 for HDL-C, and 6 for TG levels. Ten SNPs were significantly associated with more than one lipid trait in at least one ethnic group. Six SNPs were significantly associated with at least one lipid trait in more than one ethnic group, although not always with the same trait across various ethnic groups. For 25 SNPs, the associations were replicated with the same genome-wide significant lipid traits in the same direction in at least one ethnic group; at nominal significance for 13 SNPs and with a trend for association for 12 SNPs. However, the associations were not consistently present in all ethnic groups. This observation was consistent with mixed results obtained in other studies that also examined various ethnic groups.
doi:10.1371/journal.pone.0063469
PMCID: PMC3661596  PMID: 23717430
23.  Classifications within Molecular Subtypes Enables Identification of BRCA1/BRCA2 Mutation Carriers by RNA Tumor Profiling 
PLoS ONE  2013;8(5):e64268.
Pathogenic germline mutations in BRCA1 or BRCA2 are detected in less than one third of families with a strong history of breast cancer. It is therefore expected that mutations still remain undetected by currently used screening methods. In addition, a growing number of BRCA1/2 sequence variants of unclear pathogen significance are found in the families, constituting an increasing clinical challenge. New methods are therefore needed to improve the detection rate and aid the interpretation of the clinically uncertain variants. In this study we analyzed a series of 33 BRCA1, 22 BRCA2, and 128 sporadic tumors by RNA profiling to investigate the classification potential of RNA profiles to predict BRCA1/2 mutation status. We found that breast tumors from BRCA1 and BRCA2 mutation carriers display characteristic RNA expression patterns, allowing them to be distinguished from sporadic tumors. The majority of BRCA1 tumors were basal-like while BRCA2 tumors were mainly luminal B. Using RNA profiles, we were able to distinguish BRCA1 tumors from sporadic tumors among basal-like tumors with 83% accuracy and BRCA2 from sporadic tumors among luminal B tumors with 89% accuracy. Furthermore, subtype-specific BRCA1/2 gene signatures were successfully validated in two independent data sets with high accuracies. Although additional validation studies are required, indication of BRCA1/2 involvement (“BRCAness”) by RNA profiling could potentially be valuable as a tool for distinguishing pathogenic mutations from benign variants, for identification of undetected mutation carriers, and for selecting patients sensitive to new therapeutics such as PARP inhibitors.
doi:10.1371/journal.pone.0064268
PMCID: PMC3660328  PMID: 23704984
24.  Mapping of the UGT1A locus identifies an uncommon coding variant that affects mRNA expression and protects from bladder cancer 
Human Molecular Genetics  2012;21(8):1918-1930.
A recent genome-wide association study of bladder cancer identified the UGT1A gene cluster on chromosome 2q37.1 as a novel susceptibility locus. The UGT1A cluster encodes a family of UDP-glucuronosyltransferases (UGTs), which facilitate cellular detoxification and removal of aromatic amines. Bioactivated forms of aromatic amines found in tobacco smoke and industrial chemicals are the main risk factors for bladder cancer. The association within the UGT1A locus was detected by a single nucleotide polymorphism (SNP) rs11892031. Now, we performed detailed resequencing, imputation and genotyping in this region. We clarified the original genetic association detected by rs11892031 and identified an uncommon SNP rs17863783 that explained and strengthened the association in this region (allele frequency 0.014 in 4035 cases and 0.025 in 5284 controls, OR = 0.55, 95%CI = 0.44–0.69, P = 3.3 × 10−7). Rs17863783 is a synonymous coding variant Val209Val within the functional UGT1A6.1 splicing form, strongly expressed in the liver, kidney and bladder. We found the protective T allele of rs17863783 to be associated with increased mRNA expression of UGT1A6.1 in in-vitro exontrap assays and in human liver tissue samples. We suggest that rs17863783 may protect from bladder cancer by increasing the removal of carcinogens from bladder epithelium by the UGT1A6.1 protein. Our study shows an example of genetic and functional role of an uncommon protective genetic variant in a complex human disease, such as bladder cancer.
doi:10.1093/hmg/ddr619
PMCID: PMC3313801  PMID: 22228101
25.  Genetic Variants of MICB and PLCE1 and Associations with Non-Severe Dengue 
PLoS ONE  2013;8(3):e59067.
Background
A recent genome-wide association study (GWAS) identified susceptibility loci for dengue shock syndrome (DSS) at MICB rs3132468 and PLCE1 rs3740360. The aim of this study was to define the extent to which MICB (rs3132468) and PLCE1 (rs3740360) were associated with less severe clinical phenotypes of pediatric and adult dengue.
Methods
3961 laboratory-confirmed dengue cases and 5968 controls were genotyped at MICB rs3132468 and PLCE1 rs3740360. Per-allele odds ratios (OR) with 95% confidence intervals (CI) were calculated for each patient cohort. Pooled analyses were performed for adults and paediatrics respectively using a fixed effects model.
Results
Pooled analysis of the paediatric and adult cohorts indicated a significant association between MICB rs3132468 and dengue cases without shock (OR  =  1.15; 95%CI: 1.07 – 1.24; P  =  0.0012). Similarly, pooled analysis of pediatric and adult cohorts indicated a significant association between dengue cases without shock and PLCE1 rs3740360 (OR  =  0.92; 95%CI: 0.85 – 0.99; P  =  0.018). We also note significant association between both SNPs (OR  =  1.48; P  =  0.0075 for MICB rs3132468 and OR  =  0.75, P  =  0.041 for PLCE1 rs3740360) and dengue in infants.
Discussion
This study confirms that the MICB rs3132468 and PLCE1 rs3740360 risk genotypes are not only associated with DSS, but are also associated with less severe clinical phenotypes of dengue, as well as with dengue in infants. These findings have implications for our understanding of dengue pathogenesis.
doi:10.1371/journal.pone.0059067
PMCID: PMC3594159  PMID: 23536857

Results 1-25 (66)