Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo 
PLoS ONE  2015;10(10):e0140831.
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.
PMCID: PMC4607431  PMID: 26469858
3.  Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study 
Sepsis continues to be a major cause of death, disability, and health-care expenditure worldwide. Despite evidence suggesting that host genetics can influence sepsis outcomes, no specific loci have yet been convincingly replicated. The aim of this study was to identify genetic variants that influence sepsis survival.
We did a genome-wide association study in three independent cohorts of white adult patients admitted to intensive care units with sepsis, severe sepsis, or septic shock (as defined by the International Consensus Criteria) due to pneumonia or intra-abdominal infection (cohorts 1–3, n=2534 patients). The primary outcome was 28 day survival. Results for the cohort of patients with sepsis due to pneumonia were combined in a meta-analysis of 1553 patients from all three cohorts, of whom 359 died within 28 days of admission to the intensive-care unit. The most significantly associated single nucleotide polymorphisms (SNPs) were genotyped in a further 538 white patients with sepsis due to pneumonia (cohort 4), of whom 106 died.
In the genome-wide meta-analysis of three independent pneumonia cohorts (cohorts 1–3), common variants in the FER gene were strongly associated with survival (p=9·7 × 10−8). Further genotyping of the top associated SNP (rs4957796) in the additional cohort (cohort 4) resulted in a combined p value of 5·6 × 10−8 (odds ratio 0·56, 95% CI 0·45–0·69). In a time-to-event analysis, each allele reduced the mortality over 28 days by 44% (hazard ratio for death 0·56, 95% CI 0·45–0·69; likelihood ratio test p=3·4 × 10−9, after adjustment for age and stratification by cohort). Mortality was 9·5% in patients carrying the CC genotype, 15·2% in those carrying the TC genotype, and 25·3% in those carrying the TT genotype. No significant genetic associations were identified when patients with sepsis due to pneumonia and intra-abdominal infection were combined.
We have identified common variants in the FER gene that associate with a reduced risk of death from sepsis due to pneumonia. The FER gene and associated molecular pathways are potential novel targets for therapy or prevention and candidates for the development of biomarkers for risk stratification.
European Commission and the Wellcome Trust.
PMCID: PMC4314768  PMID: 25533491
4.  High-dose vitamin D3 during intensive phase treatment of pulmonary tuberculosis: a double-blind randomised controlled trial 
Lancet  2011;377(9761):242-250.
Vitamin D was used to treat tuberculosis in the pre-antibiotic era, and its metabolites induce antimycobacterial immunity in vitro. Clinical trials investigating the effect of adjunctive vitamin D on sputum culture conversion are lacking.
We conducted a multi-centre randomised controlled trial of adjunctive vitamin D in adults with sputum smear-positive pulmonary tuberculosis in London, UK. 146 participants were allocated to receive 2.5 mg vitamin D3 or placebo at baseline and at 2, 4 and 6 weeks after starting standard tuberculosis treatment. The primary endpoint of the trial was time from initiation of antimicrobial therapy to sputum culture conversion. Participants were genotyped for TaqI and FokI polymorphisms of the vitamin D receptor (VDR), and interaction analyses were conducted to determine the influence of VDR genotype on response to vitamin D. This trial is registered with (NCT00419068).
126 participants were included in the primary efficacy analysis (62 allocated to intervention, 64 allocated to placebo). Median time to sputum culture conversion was 36.0 days in the intervention arm and 43.5 days in the placebo arm (adjusted HR 1.39; 95% CI 0.90-2.16, P=0.14). TaqI genotype modified the effect of vitamin D supplementation on time to sputum culture conversion (Pinteraction=0.03), with enhanced response seen only in participants with the tt genotype (HR 8.09, 95% CI 1.36-48.01, P=0.02). FokI genotype did not modify the effect of vitamin D supplementation (Pinteraction=0.85). Mean serum 25-hydroxyvitamin D at 8 weeks was 101.4 nmol/L vs. 22.8 nmol/L in intervention vs. placebo arms (95% CI for difference 68.6-88.2 nmol/L, P<0.001).
Administration of four doses of 2.5 mg vitamin D3 elevated serum 25-hydroxyvitamin D concentrations in patients receiving intensive phase treatment for pulmonary tuberculosis and reduced time to sputum culture conversion in participants with the tt genotype of the TaqI VDR polymorphism.
PMCID: PMC4176755  PMID: 21215445
5.  Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma 
Nature genetics  2013;46(2):176-181.
Follicular lymphoma (FL) is an incurable malignancy1, with transformation to an aggressive subtype being a critical event during disease progression. Here we performed whole genome or exome sequencing on 10 FL-transformed FL pairs, followed by deep sequencing of 28 genes in an extension cohort and report the key events and evolutionary processes governing initiation and transformation. Tumor evolution occurred through either a ‘rich’ or ‘sparse’ ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histones, JAK-STAT signaling, NF-κB signaling and B-cell development genes. Longitudinal analyses revealed chromatin regulators (CREBBP, EZH2 and MLL2) as early driver genes, whilst mutations in EBF1 and regulators of NF-κB signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides novel insights into the genetic basis of follicular lymphoma, the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations within the CPC represents an attractive therapeutic strategy.
PMCID: PMC3907271  PMID: 24362818
7.  CpG dinucleotide-specific hypermethylation of the TNS3 gene promoter in human renal cell carcinoma 
Epigenetics  2013;8(7):739-747.
Tensin3 is a cytoskeletal regulatory protein that inhibits cell motility. Downregulation of the gene encoding Tensin3 (TNS3) in human renal cell carcinoma (RCC) may contribute to cancer cell metastatic behavior. We speculated that epigenetic mechanisms, e.g., gene promoter hypermethylation, might account for TNS3 downregulation. In this study, we identified and validated a TNS3 gene promoter containing a CpG island, and quantified the methylation level within this region in RCC. Using a luciferase reporter assay we demonstrated a functional minimal promoter activity for a 500-bp sequence within the TNS3 CpG island. Pyrosequencing enabled quantitative determination of DNA methylation of each CpG dinucleotide (a total of 43) in the TNS3 gene promoter. Across the entire analyzed CpG stretch, RCC DNA showed a higher methylation level than both non-tumor kidney DNA and normal control DNA. Out of all the CpGs analyzed, two CpG dinucleotides, specifically position 2 and 8, showed the most pronounced increases in methylation levels in tumor samples. Furthermore, CpG-specific higher methylation levels were correlated with lower TNS3 gene expression levels in RCC samples. In addition, pharmacological demethylation treatment of cultured kidney cells caused a 3-fold upregulation of Tensin3 expression. In conclusion, these results reveal a differential methylation pattern in the TNS3 promoter occurring in human RCC, suggesting an epigenetic mechanism for aberrant Tensin downregulation in human kidney cancer.
PMCID: PMC3781193  PMID: 23803643
Tensin3; DNA methylation; renal cell carcinoma; pyrosequencing; metastasis
8.  Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells 
Schizophrenia Research  2014;153(1-3):225-230.
MIR137, transcribed as the microRNA miR-137, is one of the leading candidate schizophrenia susceptibility genes to arise from large genome-wide association studies (GWAS) of the disorder. Recent data suggest that miR-137 modulates the expression of other schizophrenia susceptibility genes. Although bioinformatic resources are available with which to predict genes regulated by individual microRNA, there has been a lack of empirical data on genome-wide gene expression changes following miR-137 manipulation. We have therefore performed a genome-wide assessment of transcriptional changes in a human neural progenitor cell line after miR-137 over-expression and inhibition in order to elucidate molecular pathways by which genetic perturbation of miR-137 could promote susceptibility to schizophrenia. Bioinformatically-predicted miR-137 targets showed a small but highly significant down-regulation following miR-137 over-expression. Genes that were significantly down-regulated in association with miR-137 over-expression were enriched for involvement in neuronal differentiation. Differentially expressed genes that were confirmed by qPCR included others at genome-wide significant risk loci for schizophrenia (MAD1L1 and DPYD) and BDNF. These data point to molecular pathways through which genetic variation at the MIR137 locus could confer risk for schizophrenia.
PMCID: PMC3988999  PMID: 24556472
Schizophrenia; GWAS; MicroRNA; miR-137; MIR137; Gene expression; Pathway
9.  BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach 
Genome Biology  2014;15(2):R35.
Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional methylation levels. In our model, inefficient capture can readily be distinguished from low methylation levels. BayMeth improves on existing methods, allows explicit modeling of copy number variation, and offers computationally efficient analytical mean and variance estimators. BayMeth is available in the Repitools Bioconductor package.
PMCID: PMC4053803  PMID: 24517713
11.  Ethnic Variation in Inflammatory Profile in Tuberculosis 
PLoS Pathogens  2013;9(7):e1003468.
Distinct phylogenetic lineages of Mycobacterium tuberculosis (MTB) cause disease in patients of particular genetic ancestry, and elicit different patterns of cytokine and chemokine secretion when cultured with human macrophages in vitro. Circulating and antigen-stimulated concentrations of these inflammatory mediators might therefore be expected to vary significantly between tuberculosis patients of different ethnic origin. Studies to characterise such variation, and to determine whether it relates to host or bacillary factors, have not been conducted. We therefore compared circulating and antigen-stimulated concentrations of 43 inflammatory mediators and 14 haematological parameters (inflammatory profile) in 45 pulmonary tuberculosis patients of African ancestry vs. 83 patients of Eurasian ancestry in London, UK, and investigated the influence of bacillary and host genotype on these profiles. Despite having similar demographic and clinical characteristics, patients of differing ancestry exhibited distinct inflammatory profiles at presentation: those of African ancestry had lower neutrophil counts, lower serum concentrations of CCL2, CCL11 and vitamin D binding protein (DBP) but higher serum CCL5 concentrations and higher antigen-stimulated IL-1 receptor antagonist and IL-12 secretion. These differences associated with ethnic variation in host DBP genotype, but not with ethnic variation in MTB strain. Ethnic differences in inflammatory profile became more marked following initiation of antimicrobial therapy, and immunological correlates of speed of elimination of MTB from the sputum differed between patients of African vs. Eurasian ancestry. Our study demonstrates a hitherto unappreciated degree of ethnic heterogeneity in inflammatory profile in tuberculosis patients that associates primarily with ethnic variation in host, rather than bacillary, genotype. Candidate immunodiagnostics and immunological biomarkers of response to antimicrobial therapy should be derived and validated in tuberculosis patients of different ethnic origin.
Author Summary
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis. Genetically distinct strains of MTB cause disease in particular ethnic groups, and these strains vary in their ability to elicit inflammatory responses from antigen-presenting cells in vitro. Circulating and antigen-stimulated concentrations of inflammatory mediators (‘inflammatory profile’) might therefore be expected to differ between tuberculosis patients of different ethnic origin; however, this question has not previously been addressed. We therefore conducted a study to characterise ethnic variation in inflammatory profiles in a cohort of 128 newly-diagnosed tuberculosis patients in London, UK. Patients of African vs. Eurasian ancestry had distinct inflammatory profiles at presentation; differences did not relate to MTB strain variation between groups, but they did associate with ethnic variation in host genotype. Moreover, immunological correlates of the rate of MTB clearance from sputum differed between patients of African vs. Eurasian ancestry. Our findings provide insight into the mechanisms underlying ethnic variation in inflammatory profile in tuberculosis patients, and indicate that candidate immunodiagnostics and immunological biomarkers of response to tuberculosis therapy should be derived and validated in tuberculosis patients of different ethnic origin.
PMCID: PMC3701709  PMID: 23853590
12.  Rare and functional SIAE variants are not associated with autoimmune disease risk in up to 66,924 individuals of European ancestry 
Nature genetics  2011;44(1):3-5.
PMCID: PMC3287292  PMID: 22200769
13.  Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease 
Nature genetics  2011;43(12):1193-1201.
We densely genotyped, using 1000 Genomes Project pilot CEU and additional re-sequencing study variants, 183 reported immune-mediated disease non-HLA risk loci in 12,041 celiac disease cases and 12,228 controls. We identified 13 new celiac disease risk loci at genome wide significance, bringing the total number of known loci (including HLA) to 40. Multiple independent association signals are found at over a third of these loci, attributable to a combination of common, low frequency, and rare genetic variants. In comparison with previously available data such as HapMap3, our dense genotyping in a large sample size provided increased resolution of the pattern of linkage disequilibrium, and suggested localization of many signals to finer scale regions. In particular, 29 of 54 fine-mapped signals appeared localized to specific single genes - and in some instances to gene regulatory elements. We define a complex genetic architecture of risk regions, and refine risk signals, providing a next step towards elucidating causal disease mechanisms.
PMCID: PMC3242065  PMID: 22057235
14.  Inflammatory Transcriptome Profiling of Human Monocytes Exposed Acutely to Cigarette Smoke 
PLoS ONE  2012;7(2):e30120.
Cigarette smoking is responsible for 5 million deaths worldwide each year, and is a major risk factor for cardiovascular and lung diseases. Cigarette smoke contains a complex mixture of over 4000 chemicals containing 1015 free radicals. Studies show smoke is perceived by cells as an inflammatory and xenobiotic stimulus, which activates an immune response. The specific cellular mechanisms driving cigarette smoke-induced inflammation and disease are not fully understood, although the innate immune system is involved in the pathology of smoking related diseases.
Methodology/Principle findings
To address the impact of smoke as an inflammagen on the innate immune system, THP-1 cells and Human PBMCs were stimulated with 3 and 10% (v/v) cigarette smoke extract (CSE) for 8 and 24 hours. Total RNA was extracted and the transcriptome analysed using Illumina BeadChip arrays. In THP-1 cells, 10% CSE resulted in 80 genes being upregulated and 37 downregulated by ≥1.5 fold after 8 hours. In PBMCs stimulated with 10% CSE for 8 hours, 199 genes were upregulated and 206 genes downregulated by ≥1.5 fold. After 24 hours, the number of genes activated and repressed by ≥1.5 fold had risen to 311 and 306 respectively. The major pathways that were altered are associated with cell survival, such as inducible antioxidants, protein chaperone and folding proteins, and the ubiquitin/proteosome pathway.
Our results suggest that cigarette smoke causes inflammation and has detrimental effects on the metabolism and function of innate immune cells. In addition, THP-1 cells provide a genetically stable alternative to primary cells for the study of the effects of cigarette smoke on human monocytes.
PMCID: PMC3281820  PMID: 22363418
15.  Identification of Type 1 Diabetes–Associated DNA Methylation Variable Positions That Precede Disease Diagnosis 
PLoS Genetics  2011;7(9):e1002300.
Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease.
Author Summary
Type 1 diabetes (T1D) is a complex autoimmune disease affecting >30 million people worldwide. It is caused by a combination of genetic and non-genetic factors, leading to destruction of insulin-secreting cells. Although significant progress has recently been made in elucidating the genetics of T1D, the non-genetic component has remained poorly defined. Epigenetic modifications, such as methylation of DNA, are indispensable for genomic processes such as transcriptional regulation and are frequently perturbed in human disease. We therefore hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology, and we performed a genome-wide DNA methylation analysis of a specific subset of immune cells (monocytes) from monozygotic twins discordant for T1D. This revealed the presence of T1D–specific methylation variable positions (T1D–MVPs) in the T1D–affected co-twins. Since these T1D–MVPs were found in MZ twins, they cannot be due to genetic differences. Additional experiments revealed that some of these T1D–MVPs are found in individuals before T1D diagnosis, suggesting they arise very early in the process that leads to overt T1D and are not simply due to post-disease associated factors (e.g. medication or long-term metabolic changes). T1D–MVPs may thus potentially represent a previously unappreciated, and important, component of type 1 diabetes risk.
PMCID: PMC3183089  PMID: 21980303
16.  Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans 
Epigenetics  2011;6(1):86-94.
Supplementation with folic acid during pregnancy is known to reduce the risk of neural tube defects and low birth weight. It is thought that folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. We examined the effects of folate on the human methylome using quantitative interrogation of 27,578 CpG loci associated with 14,496 genes at single-nucleotide resolution across 12 fetal cord blood samples. Consistent with previous studies, the majority of CpG dinucleotides located within CpG islands exhibited hypomethylation while those outside CpG islands showed mid-high methylation. However, for the first time in human samples, unbiased analysis of methylation across samples revealed a significant correlation of methylation patterns with plasma homocysteine, LINE-1 methylation and birth weight centile. Additionally, CpG methylation significantly correlated with either birth weight or LINE-1 methylation were predominantly located in CpG islands. These data indicate that levels of folate-associated intermediates in cord blood reflect their influence and consequences for the fetal epigenome and potentially on pregnancy outcome. In these cases, their influence might be exerted during late gestation or reflect those present during the peri-conceptual period.
PMCID: PMC3052917  PMID: 20864804
cord blood; birth weight; folic acid; homocysteine; BeadArray; hierarchical clustering; Illumina
17.  Multiple common variants for celiac disease influencing immune gene expression 
Nature genetics  2010;42(4):295-302.
We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression.
PMCID: PMC2847618  PMID: 20190752
18.  Array-based DNA methylation profiling in follicular lymphoma 
Leukemia  2009;23(10):1858-1866.
Quantitative methylation profiling was performed using the Illumina GoldenGate Assay in untreated Follicular Lymphoma (FL) (164), paired pre- and post-transformation FL (20), benign haematopoietic (24) samples and purified B & T cells from two FL cases. Methylation values allowed separation of untreated FL samples from controls with one exception based primarily on tumour-specific gains of methylation typically occurring within CpG islands. Genes which are targets for epigenetic repression in stem cells by Polycomb Repressor Complex 2 were significantly overrepresented among hypermethylated genes. Methylation profiles were conserved in sequential FL and t-FL biopsies suggesting that widespread methylation represents an early event in lymphomagenesis and may not contribute substantially to transformation. Significant (p<0.05) correlation between FL methylation values and reduced gene expression was demonstrated for up to 28% of loci. Methylation changes occurred predominantly in B cells with variability in the amount of non-malignant tissue between samples preventing conclusive correlation with survival. This represents an important caveat in attributing prognostic relevance to methylation and future studies in cancer will optimally require purified tumour populations to address the impact of methylation on clinical outcome.
PMCID: PMC2762475  PMID: 19587707
Methylation; follicular lymphoma; gene expression; polycomb; transformation
19.  Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing 
Human Molecular Genetics  2009;19(1):122-134.
Many disease-associated variants identified by genome-wide association (GWA) studies are expected to regulate gene expression. Allele-specific expression (ASE) quantifies transcription from both haplotypes using individuals heterozygous at tested SNPs. We performed deep human transcriptome-wide resequencing (RNA-seq) for ASE analysis and expression quantitative trait locus discovery. We resequenced double poly(A)-selected RNA from primary CD4+ T cells (n = 4 individuals, both activated and untreated conditions) and developed tools for paired-end RNA-seq alignment and ASE analysis. We generated an average of 20 million uniquely mapping 45 base reads per sample. We obtained sufficient read depth to test 1371 unique transcripts for ASE. Multiple biases inflate the false discovery rate which we estimate to be ∼50% for random SNPs. However, after controlling for these biases and considering the subset of SNPs that pass HapMap QC, 4.6% of heterozygous SNP-sample pairs show evidence of imbalance (P < 0.001). We validated four findings by both bacterial cloning and Sanger sequencing assays. We also found convincing evidence for allelic imbalance at multiple reporter exonic SNPs in CD6 for two samples heterozygous at the multiple sclerosis-associated variant rs17824933, linking GWA findings with variation in gene expression. Finally, we show in CD4+ T cells from a further individual that high-throughput sequencing of genomic DNA and RNA-seq following enrichment for targeted gene sequences by sequence capture methods offers an unbiased means to increase the read depth for transcripts of interest, and therefore a method to investigate the regulatory role of many disease-associated genetic variants.
PMCID: PMC2792152  PMID: 19825846
20.  Novel celiac disease genetic determinants related to the immune response 
Nature genetics  2008;40(4):395-402.
Our celiac disease genome-wide association study identified IL2/IL21 region risk variants. We genotyped 1,020 of the most associated non-HLA markers in a further 1,643 cases and 3,406 controls. Joint analysis including the genome-wide association study data (767 cases, 1422 controls) identified seven new risk regions (P <5×10-7). Six regions harbor genes controlling immune responses, including: CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504), TAGAP. Whole blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2/IL21, CCR3 and SH2B3 risk regions. Extensive genome-wide association study follow-up has identified additional celiac disease risk variants in relevant biological pathways.
PMCID: PMC2673512  PMID: 18311140
21.  Integrated Functional, Gene Expression and Genomic Analysis for the Identification of Cancer Targets 
PLoS ONE  2009;4(4):e5120.
The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi) cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.
PMCID: PMC2663812  PMID: 19357772
22.  Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia 
PLoS ONE  2008;3(5):e2141.
Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (, demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia.
PMCID: PMC2373886  PMID: 18478077

Results 1-22 (22)