PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Characterisation of Major Histocompatibility Complex Class I in the Australian Cane Toad, Rhinella marina 
PLoS ONE  2014;9(8):e102824.
The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad's complex history of introductions as a biocontrol agent and its subsequent invasion across Australia.
doi:10.1371/journal.pone.0102824
PMCID: PMC4122387  PMID: 25093458
2.  Tracing Monotreme Venom Evolution in the Genomics Era 
Toxins  2014;6(4):1260-1273.
The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.
doi:10.3390/toxins6041260
PMCID: PMC4014732  PMID: 24699339
crural system; echidna; genome; platypus; toxin; transcriptomics
3.  Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics 
Biology Letters  2013;9(1):20120900.
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes.
doi:10.1098/rsbl.2012.0900
PMCID: PMC3565505  PMID: 23221872
Sarcophilus harrisii; major histocompatibility complex
4.  Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours 
Evolutionary Applications  2013;7(2):260-265.
The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.
doi:10.1111/eva.12117
PMCID: PMC3927887  PMID: 24567746
cancer evolution; genomic decay; Tasmanian Devil Facial Tumour Disease; tetraploidy
5.  Evolution of a contagious cancer: epigenetic variation in Devil Facial Tumour Disease 
The emergence of Devil Facial Tumour Disease (DFTD), a highly contagious cancer, is driving Tasmanian devils (Sarcophilus harrisii) to extinction. The cancer is a genetically and chromosomally stable clonal cell line which is transmitted by biting during social interactions. In the present study, we explore the Devil Facial Tumour (DFT) epigenome and the genes involved in DNA methylation homeostasis. We show that tumour cells have similar levels of methylation to peripheral nerves, the tissue from which DFTD originated. We did not observe any strain or region-specific epimutations. However, we revealed a significant increase in hypomethylation in DFT samples over time (p < 0.0001). We propose that loss of methylation is not because of a maintenance deficiency, as an upregulation of DNA methyltransferase 1 gene was observed in tumours compared with nerves (p < 0.005). Instead, we believe that loss of methylation is owing to active demethylation, supported by the temporal increase in MBD2 and MBD4 (p < 0.001). The implications of these changes on disease phenotypes need to be explored. Our work shows that DFTD should not be treated as a static entity, but rather as an evolving parasite with epigenetic plasticity. Understanding the role of epimutations in the evolution of this parasitic cancer will provide unique insights into the role of epigenetic plasticity in cancer evolution and progression in traditional cancers that arise and die with their hosts.
doi:10.1098/rspb.2012.1720
PMCID: PMC3574417  PMID: 23135679
cancer; DNA methylation; epigenetic; evolution; Tasmanian devil (Sarcophilus harrisii); marsupial
6.  Echidna Venom Gland Transcriptome Provides Insights into the Evolution of Monotreme Venom 
PLoS ONE  2013;8(11):e79092.
Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna “venom” may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.
doi:10.1371/journal.pone.0079092
PMCID: PMC3827146  PMID: 24265746
7.  A Limited Role for Gene Duplications in the Evolution of Platypus Venom 
Molecular Biology and Evolution  2011;29(1):167-177.
Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.
doi:10.1093/molbev/msr180
PMCID: PMC3663093  PMID: 21816864
gene duplications; venom; platypus; evolution
8.  Telomere Dynamics and Homeostasis in a Transmissible Cancer 
PLoS ONE  2012;7(8):e44085.
Background
Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the “Hayflick limit”.
Methodology/Principal Findings
In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation.
Conclusions/Significance
DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential.
doi:10.1371/journal.pone.0044085
PMCID: PMC3430654  PMID: 22952882
9.  New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease 
PLoS ONE  2012;7(6):e36955.
Background
Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease.
Methodology/Principal Findings
We compared MHC class I sequences in 29 healthy and 22 diseased Tasmanian devils from West Pencil Pine, a population in north-western Tasmania exhibiting reduced disease impacts of DFTD. Amplified alleles were assigned to four loci, Saha-UA, Saha-UB, Saha-UC and Saha-UD based on recently obtained genomic sequence data. Copy number variation (caused by a deletion) at Saha-UA was confirmed using a PCR assay. No association between the frequency of this deletion and disease status was identified. All individuals had alleles at Saha-UD, disproving theories of disease susceptibility relating to copy number variation at this locus. Genetic variation between the two sub-groups (healthy and diseased) was also compared using eight MHC-linked microsatellite markers. No significant differences were identified in allele frequency, however differences were noted in the genotype frequencies of two microsatellites located near non-antigen presenting genes within the MHC.
Conclusions/Significance
We did not find predictable differences in MHC class I copy number variation to account for differences in susceptibility to DFTD. Genotypic data was equivocal but indentified genomic areas for further study.
doi:10.1371/journal.pone.0036955
PMCID: PMC3368896  PMID: 22701561
10.  Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC 
BMC Genomics  2012;13:87.
Background
The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils.
Results
Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas.
Conclusions
The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.
doi:10.1186/1471-2164-13-87
PMCID: PMC3414760  PMID: 22404855
MHC; Tasmanian devil; Copy number variation; Devil facial tumour disease
11.  Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour 
PLoS Genetics  2012;8(2):e1002483.
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.
Author Summary
The world's largest carnivorous marsupial, the Tasmanian devil, is threatened with extinction due to the emergence of devil facial tumour disease (DFTD), a fatal transmissible tumour. Critical loss of genetic diversity has rendered the devil vulnerable to transmission of tumour cells by grafting or transplanting the cells while biting and jaw wrestling. Initial studies of DFTD tumours revealed rearrangements among tumour chromosomes, with several missing chromosomes and four additional marker chromosomes of unknown origin. Since then, new strains of the disease have emerged and appear to be derived from the original strain. With no prior information available regarding the location of genes on normal devil chromosomes, a necessary first step towards characterisation of chromosome rearrangements in DFTD was to construct a map of the normal devil genome. This enabled us to elucidate the chromosome rearrangements in three DFTD strains. In doing so we determined the origin of the marker chromosomes and compared the three strains to determine which areas of the genome are involved in ongoing tumour evolution. Interestingly, rearrangements between strains are limited to particular genomic regions, demonstrating the unusual stability of this unique cancer. This study is therefore an important first step towards understanding the genetics of DFTD.
doi:10.1371/journal.pgen.1002483
PMCID: PMC3280961  PMID: 22359511
12.  Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options 
PLoS ONE  2011;6(8):e24030.
Background
To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes.
Principal Finding
We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii.
Conclusions and Significance
Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.
doi:10.1371/journal.pone.0024030
PMCID: PMC3166071  PMID: 21912615
13.  A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map 
BMC Genomics  2011;12:422.
Background
The limited (2X) coverage of the tammar wallaby (Macropus eugenii) genome sequence dataset currently presents a challenge for assembly and anchoring onto chromosomes. To provide a framework for this assembly, it would be a great advantage to have a dense map of the tammar wallaby genome. However, only limited mapping data are available for this non-model species, comprising a physical map and a linkage map.
Results
We combined all available tammar wallaby mapping data to create a tammar wallaby integrated map, using the Location DataBase (LDB) strategy. This first-generation integrated map combines all available information from the second-generation tammar wallaby linkage map with 148 loci, and extensive FISH mapping data for 492 loci, especially for genes likely to be located at the ends of wallaby chromosomes or at evolutionary breakpoints inferred from comparative information. For loci whose positions are only approximately known, their location in the integrated map was refined on the basis of comparative information from opossum (Monodelphis domestica) and human. Interpolation of segments from the opossum and human assemblies into the integrated map enabled the subsequent construction of a tammar wallaby first-generation virtual genome map, which comprises 14336 markers, including 13783 genes recruited from opossum and human assemblies. Both maps are freely available at http://compldb.angis.org.au.
Conclusions
The first-generation integrated map and the first-generation virtual genome map provide a backbone for the chromosome assembly of the tammar wallaby genome sequence. For example, 78% of the 10257 gene-scaffolds in the Ensembl annotation of the tammar wallaby genome sequence (including 10522 protein-coding genes) can now be given a chromosome location in the tammar wallaby virtual genome map.
doi:10.1186/1471-2164-12-422
PMCID: PMC3170641  PMID: 21854555
14.  Immunome database for marsupials and monotremes 
BMC Immunology  2011;12:48.
Background
To understand the evolutionary origins of our own immune system, we need to characterise the immune system of our distant relatives, the marsupials and monotremes. The recent sequencing of the genomes of two marsupials (opossum and tammar wallaby) and a monotreme (platypus) provides an opportunity to characterise the immune gene repertoires of these model organisms. This was required as many genes involved in immunity evolve rapidly and fail to be detected by automated gene annotation pipelines.
Description
We have developed a database of immune genes from the tammar wallaby, red-necked wallaby, northern brown bandicoot, brush-tail possum, opossum, echidna and platypus. The resource contains 2,235 newly identified sequences and 3,197 sequences which had been described previously. This comprehensive dataset was built from a variety of sources, including EST projects and expert-curated gene predictions generated through a variety of methods including chained-BLAST and sensitive HMMER searches. To facilitate systems-based research we have grouped sequences based on broad Gene Ontology categories as well as by specific functional immune groups. Sequences can be extracted by keyword, gene name, protein domain and organism name. Users can also search the database using BLAST.
Conclusion
The Immunome Database for Marsupials and Monotremes (IDMM) is a comprehensive database of all known marsupial and monotreme immune genes. It provides a single point of reference for genomic and transcriptomic datasets. Data from other marsupial and monotreme species will be added to the database as it become available. This resource will be utilized by marsupial and monotreme immunologists as well as researchers interested in the evolution of mammalian immunity.
doi:10.1186/1471-2172-12-48
PMCID: PMC3173380  PMID: 21854560
15.  Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby 
BMC Genomics  2011;12:420.
Background
The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby.
Results
We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed.
Conclusion
This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system.
doi:10.1186/1471-2164-12-420
PMCID: PMC3173455  PMID: 21854594
16.  The tammar wallaby major histocompatibility complex shows evidence of past genomic instability 
BMC Genomics  2011;12:421.
Background
The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome.
Results
Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability.
Conclusions
The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.
doi:10.1186/1471-2164-12-421
PMCID: PMC3179965  PMID: 21854592
17.  Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development 
Renfree, Marilyn B | Papenfuss, Anthony T | Deakin, Janine E | Lindsay, James | Heider, Thomas | Belov, Katherine | Rens, Willem | Waters, Paul D | Pharo, Elizabeth A | Shaw, Geoff | Wong, Emily SW | Lefèvre, Christophe M | Nicholas, Kevin R | Kuroki, Yoko | Wakefield, Matthew J | Zenger, Kyall R | Wang, Chenwei | Ferguson-Smith, Malcolm | Nicholas, Frank W | Hickford, Danielle | Yu, Hongshi | Short, Kirsty R | Siddle, Hannah V | Frankenberg, Stephen R | Chew, Keng Yih | Menzies, Brandon R | Stringer, Jessica M | Suzuki, Shunsuke | Hore, Timothy A | Delbridge, Margaret L | Mohammadi, Amir | Schneider, Nanette Y | Hu, Yanqiu | O'Hara, William | Al Nadaf, Shafagh | Wu, Chen | Feng, Zhi-Ping | Cocks, Benjamin G | Wang, Jianghui | Flicek, Paul | Searle, Stephen MJ | Fairley, Susan | Beal, Kathryn | Herrero, Javier | Carone, Dawn M | Suzuki, Yutaka | Sugano, Sumio | Toyoda, Atsushi | Sakaki, Yoshiyuki | Kondo, Shinji | Nishida, Yuichiro | Tatsumoto, Shoji | Mandiou, Ion | Hsu, Arthur | McColl, Kaighin A | Lansdell, Benjamin | Weinstock, George | Kuczek, Elizabeth | McGrath, Annette | Wilson, Peter | Men, Artem | Hazar-Rethinam, Mehlika | Hall, Allison | Davis, John | Wood, David | Williams, Sarah | Sundaravadanam, Yogi | Muzny, Donna M | Jhangiani, Shalini N | Lewis, Lora R | Morgan, Margaret B | Okwuonu, Geoffrey O | Ruiz, San Juana | Santibanez, Jireh | Nazareth, Lynne | Cree, Andrew | Fowler, Gerald | Kovar, Christie L | Dinh, Huyen H | Joshi, Vandita | Jing, Chyn | Lara, Fremiet | Thornton, Rebecca | Chen, Lei | Deng, Jixin | Liu, Yue | Shen, Joshua Y | Song, Xing-Zhi | Edson, Janette | Troon, Carmen | Thomas, Daniel | Stephens, Amber | Yapa, Lankesha | Levchenko, Tanya | Gibbs, Richard A | Cooper, Desmond W | Speed, Terence P | Fujiyama, Asao | M Graves, Jennifer A | O'Neill, Rachel J | Pask, Andrew J | Forrest, Susan M | Worley, Kim C
Genome Biology  2011;12(8):R81.
Background
We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development.
Results
The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements.
Conclusions
Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
doi:10.1186/gb-2011-12-8-r81
PMCID: PMC3277949  PMID: 21854559
18.  Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an Endangered Marsupial Species with Limited Genetic Diversity 
PLoS ONE  2011;6(7):e22402.
Tasmanian devils (Sarcophilus harrisii) are on the verge of extinction due to a transmissible cancer, devil facial tumour disease (DFTD). This tumour is an allograft that is transmitted between individuals without immune recognition of the tumour cells. The mechanism to explain this lack of immune recognition and acceptance is not well understood. It has been hypothesized that lack of genetic diversity at the Major Histocompatibility Complex (MHC) allowed the tumour cells to grow in genetically similar hosts without evoking an immune response to alloantigens. We conducted mixed lymphocyte reactions and skin grafts to measure functional MHC diversity in the Tasmanian devil population. The limited MHC diversity was sufficient to produce measurable mixed lymphocyte reactions. There was a wide range of responses, from low or no reaction to relatively strong responses. The highest responses occurred when lymphocytes from devils from the east of Tasmania were mixed with lymphocytes from devils from the west of Tasmania. All of the five successful skin allografts were rejected within 14 days after surgery, even though little or no MHC I and II mismatches were found. Extensive T-cell infiltration characterised the immune rejection. We conclude that Tasmanian devils are capable of allogeneic rejection. Consequently, a lack of functional allorecognition mechanisms in the devil population does not explain the transmission of a contagious cancer.
doi:10.1371/journal.pone.0022402
PMCID: PMC3141043  PMID: 21811598
19.  MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer 
Tasmanian devils face extinction owing to the emergence of a contagious cancer. Devil facial tumour disease (DFTD) is a clonal cancer spread owing to a lack of major histocompatibility complex (MHC) barriers in Tasmanian devil populations. We present a comprehensive screen of MHC diversity in devils and identify 25 MHC types and 53 novel sequences, but conclude that overall levels of MHC diversity at the sequence level are low. The majority of MHC Class I variation can be explained by allelic copy number variation with two to seven sequence variants identified per individual. MHC sequences are divided into two distinct groups based on sequence similarity. DFTD cells and most devils have sequences from both groups. Twenty per cent of individuals have a restricted MHC repertoire and contain only group I or only group II sequences. Counterintuitively, we postulate that the immune system of individuals with a restricted MHC repertoire may recognize foreign MHC antigens on the surface of the DFTD cell. The implication of these results for management of DFTD and this endangered species are discussed.
doi:10.1098/rspb.2009.2362
PMCID: PMC2880097  PMID: 20219742
Tasmanian devil; MHC; devil facial tumour disease; marsupial; cancer
20.  Major Histocompatibility Complex (MHC) Markers in Conservation Biology 
Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.
doi:10.3390/ijms12085168
PMCID: PMC3179158  PMID: 21954351
Major Histocompatibility Complex (MHC); conservation biology; genetic rescue; captive breeding; Tasmanian devil (Sarcophilus harrisii); Devil Facial Tumor Disease (DFTD); next-generation sequencing
21.  Novel venom gene discovery in the platypus 
Genome Biology  2010;11(9):R95.
Background
To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components.
Results
We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation.
Conclusions
This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom.
doi:10.1186/gb-2010-11-9-r95
PMCID: PMC2965387  PMID: 20920228
22.  Genome analysis of the platypus reveals unique signatures of evolution 
Warren, Wesley C. | Hillier, LaDeana W. | Marshall Graves, Jennifer A. | Birney, Ewan | Ponting, Chris P. | Grützner, Frank | Belov, Katherine | Miller, Webb | Clarke, Laura | Chinwalla, Asif T. | Yang, Shiaw-Pyng | Heger, Andreas | Locke, Devin P. | Miethke, Pat | Waters, Paul D. | Veyrunes, Frédéric | Fulton, Lucinda | Fulton, Bob | Graves, Tina | Wallis, John | Puente, Xose S. | López-Otín, Carlos | Ordóñez, Gonzalo R. | Eichler, Evan E. | Chen, Lin | Cheng, Ze | Deakin, Janine E. | Alsop, Amber | Thompson, Katherine | Kirby, Patrick | Papenfuss, Anthony T. | Wakefield, Matthew J. | Olender, Tsviya | Lancet, Doron | Huttley, Gavin A. | Smit, Arian F. A. | Pask, Andrew | Temple-Smith, Peter | Batzer, Mark A. | Walker, Jerilyn A. | Konkel, Miriam K. | Harris, Robert S. | Whittington, Camilla M. | Wong, Emily S. W. | Gemmell, Neil J. | Buschiazzo, Emmanuel | Vargas Jentzsch, Iris M. | Merkel, Angelika | Schmitz, Juergen | Zemann, Anja | Churakov, Gennady | Kriegs, Jan Ole | Brosius, Juergen | Murchison, Elizabeth P. | Sachidanandam, Ravi | Smith, Carly | Hannon, Gregory J. | Tsend-Ayush, Enkhjargal | McMillan, Daniel | Attenborough, Rosalind | Rens, Willem | Ferguson-Smith, Malcolm | Lefèvre, Christophe M. | Sharp, Julie A. | Nicholas, Kevin R. | Ray, David A. | Kube, Michael | Reinhardt, Richard | Pringle, Thomas H. | Taylor, James | Jones, Russell C. | Nixon, Brett | Dacheux, Jean-Louis | Niwa, Hitoshi | Sekita, Yoko | Huang, Xiaoqiu | Stark, Alexander | Kheradpour, Pouya | Kellis, Manolis | Flicek, Paul | Chen, Yuan | Webber, Caleb | Hardison, Ross | Nelson, Joanne | Hallsworth-Pepin, Kym | Delehaunty, Kim | Markovic, Chris | Minx, Pat | Feng, Yucheng | Kremitzki, Colin | Mitreva, Makedonka | Glasscock, Jarret | Wylie, Todd | Wohldmann, Patricia | Thiru, Prathapan | Nhan, Michael N. | Pohl, Craig S. | Smith, Scott M. | Hou, Shunfeng | Renfree, Marilyn B. | Mardis, Elaine R. | Wilson, Richard K.
Nature  2008;453(7192):175-183.
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
doi:10.1038/nature06936
PMCID: PMC2803040  PMID: 18464734
23.  MHC-linked and un-linked class I genes in the wallaby 
BMC Genomics  2009;10:310.
Background
MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations.
Results
Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages.
Conclusion
We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function.
doi:10.1186/1471-2164-10-310
PMCID: PMC2719672  PMID: 19602235
24.  In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals 
Immunome Research  2006;2:4.
Background
Cytokines are small proteins that regulate immunity in vertebrate species. Marsupial and eutherian mammals last shared a common ancestor more than 180 million years ago, so it is not surprising that attempts to isolate many key marsupial cytokines using traditional laboratory techniques have been unsuccessful. This paucity of molecular data has led some authors to suggest that the marsupial immune system is 'primitive' and not on par with the sophisticated immune system of eutherian (placental) mammals.
Results
The sequencing of the first marsupial genome has allowed us to identify highly divergent immune genes. We used gene prediction methods that incorporate the identification of gene location using BLAST, SYNTENY + BLAST and HMMER to identify 23 key marsupial immune genes, including IFN-γ, IL-2, IL-4, IL-6, IL-12 and IL-13, in the genome of the grey short-tailed opossum (Monodelphis domestica). Many of these genes were not predicted in the publicly available automated annotations.
Conclusion
The power of this approach was demonstrated by the identification of orthologous cytokines between marsupials and eutherians that share only 30% identity at the amino acid level. Furthermore, the presence of key immunological genes suggests that marsupials do indeed possess a sophisticated immune system, whose function may parallel that of eutherian mammals.
doi:10.1186/1745-7580-2-4
PMCID: PMC1660534  PMID: 17094811
25.  Evolution and comparative analysis of the MHC Class III inflammatory region 
BMC Genomics  2006;7:281.
Background
The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative analysis of a tammar wallaby BAC containing the inflammatory region. We also discuss the extent of sequence conservation across the entire region and identify elements conserved in evolution.
Results
Fourteen Class III genes from the tammar wallaby inflammatory region were characterised and compared to their orthologues in other vertebrates. The organisation and sequence of genes in the inflammatory region of both the wallaby and South American opossum are highly conserved compared to known genes from eutherian ("placental") mammals. Some minor differences separate the two marsupial species. Eight genes within the inflammatory region have remained tightly clustered for at least 360 million years, predating the divergence of the amphibian lineage. Analysis of sequence conservation identified 354 elements that are conserved. These range in size from 7 to 431 bases and cover 15.6% of the inflammatory region, representing approximately a 4-fold increase compared to the average for vertebrate genomes. About 5.5% of this conserved sequence is marsupial-specific, including three cases of marsupial-specific repeats. Highly Conserved Elements were also characterised.
Conclusion
Using comparative analysis, we show that a cluster of MHC genes involved in inflammation, including TNF, LTA (or its putative teleost homolog TNF-N), APOM, and BAT3 have remained together for over 450 million years, predating the divergence of mammals from fish. The observed enrichment in conserved sequences within the inflammatory region suggests conservation at the transcriptional regulatory level, in addition to the functional level.
doi:10.1186/1471-2164-7-281
PMCID: PMC1654159  PMID: 17081307

Results 1-25 (28)