Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Age-associated evolution of plasmatic amyloid in mouse lemur primates: Relationship with intracellular amyloid deposition 
Neurobiology of aging  2014;36(1):149-156.
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared to young ones. Histological evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ.
PMCID: PMC4268267  PMID: 25131002
Amyloid; Alzheimer; Intracellular amyloid; Cerebral aging; Lemur; Microcebus murinus; Plasma
2.  On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs 
PLoS ONE  2015;10(11):e0143719.
The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009,, we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology.
PMCID: PMC4664384  PMID: 26618512
3.  Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate 
Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals.
PMCID: PMC4132673  PMID: 25100693
functional senescence; body mass; condition-dependent mortality; life-history evolution; lifespan; sex difference
4.  Resveratrol Metabolism in a Non-Human Primate, the Grey Mouse Lemur (Microcebus murinus), Using Ultra-High-Performance Liquid Chromatography–Quadrupole Time of Flight 
PLoS ONE  2014;9(3):e91932.
The grey mouse lemur (Microcebus murinus) is a non-human primate used to study the ageing process. Resveratrol is a polyphenol that may increase lifespan by delaying age-associated pathologies. However, no information about resveratrol absorption and metabolism is available for this primate. Resveratrol and its metabolites were qualitatively and quantitatively analyzed in male mouse-lemur plasma (after 200−1 of oral resveratrol) by ultra-high performance liquid chromatography (UHPLC), coupled to a quadrupole-time-of-flight (Q-TOF) mass spectrometer used in full-scan mode. Data analyses showed, in MSE mode, an ion common to resveratrol and all its metabolites: m/z 227.072, and an ion common to dihydro-resveratrol metabolites: m/z 229.08. A semi-targeted study enabled us to identify six hydrophilic resveratrol metabolites (one diglucurono-conjugated, two monoglucurono-conjugated, one monosulfo-conjugated and two both sulfo- and glucurono-conjugated derivatives) and three hydrophilic metabolites of dihydro-resveratrol (one monoglucurono-conjugated, one monosulfo-conjugated, and one both sulfo- and glucurono-conjugated derivatives). The presence of such metabolites has been already detected in the mouse, rat, pig, and humans. Free resveratrol was measurable for several hours in mouse-lemur plasma, and its two main metabolites were trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate. Free dihydro-resveratrol was not measurable whatever the time of plasma collection, while its hydrophilic metabolites were present at 24 h after intake. These data will help us interpret the effect of resveratrol in mouse lemurs and provide further information on the inter-species characteristics of resveratrol metabolism.
PMCID: PMC3963864  PMID: 24663435
5.  Deficits of psychomotor and mnesic functions across aging in mouse lemur primates 
Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.
PMCID: PMC4288241  PMID: 25620921
psychomotor; anxiety; working memory; spatial memory; recognition memory
6.  Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs 
In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus) were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.
PMCID: PMC3745962  PMID: 23983895
7.  Age-related cerebral atrophy in non-human primates predicts cognitive impairments 
Neurobiology of Aging  2010;33(6):1096-1109.
In humans, but not in nonhuman primates, a clear relationship has been established between age-associated cognitive decline and atrophy of specific brain regions. We evaluated age-related cerebral atrophy and cognitive alterations in mouse lemur primates. Cerebral atrophy was evaluated by in vivo magnetic resonance imaging in 34 animals aged from 1.9 to 11.8 years. The caudate and splenium were atrophied in most older animals whereas shrinkage of the hippocampus, entorhinal cortex, and septal region was identified in a subgroup of the older animals. The temporal and cingulate cortex also exhibited a severe atrophy whereas frontal and parietal areas were spared. Measures of cognitive ability in 16 animals studied by MRI showed that both executive functions and spatial memory declined with aging. Impairment of executive functions in older animals was associated with atrophy of the septal region while spatial memory performance was related to atrophy of the hippocampus and entorhinal cortex. Mouse lemurs are the first nonhuman primates in which a clear relationship is established between age-associated cognitive alteration and cerebral atrophy.
PMCID: PMC3381737  PMID: 20970891
Aging; Atrophy; Brain; Cognitive disorganization; Imaging
8.  Sleep Deprivation Impairs Spatial Retrieval but Not Spatial Learning in the Non-Human Primate Grey Mouse Lemur 
PLoS ONE  2013;8(5):e64493.
A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD) impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus), which is an interesting model of aging and Alzheimer's disease (AD). Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging.
PMCID: PMC3661499  PMID: 23717620
9.  Micro-MRI Study of Cerebral Aging: Ex Vivo Detection of Hippocampal Subfield Reorganization, Microhemorrhages and Amyloid Plaques in Mouse Lemur Primates 
PLoS ONE  2013;8(2):e56593.
Mouse lemurs are non-human primate models of cerebral aging and neurodegeneration. Much smaller than other primates, they recapitulate numerous features of human brain aging, including progressive cerebral atrophy and correlation between regional atrophy and cognitive impairments. Characterization of brain atrophy in mouse lemurs has been done by MRI measures of regional CSF volume and by MRI measures of regional atrophy. Here, we further characterize mouse lemur brain aging using ex vivo MR microscopy (31 µm in-plane resolution). First, we performed a non-biased, direct volumetric quantification of dentate gyrus and extended Ammon's horn. We show that both dentate gyrus and Ammon's horn undergo an age-related reorganization leading to a growth of the dentate gyrus and an atrophy of the Ammon's horn, even in the absence of global hippocampal atrophy. Second, on these first MR microscopic images of the mouse lemur brain, we depicted cortical and hippocampal hypointense spots. We demonstrated that their incidence increases with aging and that they correspond either to amyloid deposits or to cerebral microhemorrhages.
PMCID: PMC3584101  PMID: 23460806
10.  Characterization of blood biochemical markers during aging in the Grey Mouse Lemur (Microcebus murinus): impact of gender and season 
Hematologic and biochemical data are needed to characterize the health status of animal populations over time to determine the habitat quality and captivity conditions. Blood components and the chemical entities that they transport change predominantly with sex and age. The aim of this study was to utilize blood chemistry monitoring to establish the reference levels in a small prosimian primate, the Grey Mouse Lemur (Microcebus murinus).
In the captive colony, mouse lemurs may live 10–12 years, and three age groups for both males and females were studied: young (1–3 years), middle-aged (4–5 years) and old (6–10 years). Blood biochemical markers were measured using the VetScan Comprehensive Diagnostic Profile. Because many life history traits of this primate are highly dependent on the photoperiod (body mass and reproduction), the effect of season was also assessed.
The main effect of age was observed in blood markers of renal functions such as creatinine, which was higher among females. Additionally, blood urea nitrogen significantly increased with age and is potentially linked to chronic renal insufficiency, which has been described in captive mouse lemurs. The results demonstrated significant effects related to season, especially in blood protein levels and glucose rates; these effects were observed regardless of gender or age and were likely due to seasonal variations in food intake, which is very marked in this species.
These results were highly similar with those obtained in other primate species and can serve as references for future research of the Grey Mouse Lemur.
PMCID: PMC3514280  PMID: 23131178
Aging; Blood biochemical markers; Grey Mouse Lemur; Microcebus murinus; Seasonality
11.  Age-associated cerebral atrophy in mouse lemur Primates 
Neurobiology of aging  2009;32(5):894-906.
We assessed the regional brain atrophy in mouse lemur primates from 4.7Tesla T2-weighted magnetic resonance images. Thirty animals aged from 1.9 to 11.3 years were imaged. Sixty one percent of the 23 animals older than 3 years involved in the study displayed an atrophy process. Cross sectional analysis suggests that the atrophy follows a gradual pathway, starting in the frontal region then involving the temporal and/or the parietal part of the brain and finally the occipital region. Histological evaluation of five animals selected according to various stages of atrophy suggested that extracellular amyloid deposits and tau pathology can not explain by themselves this atrophy and that intracellular amyloid deposition is more closely linked to this pathology. This study suggests that most of the age-related atrophy occurring in mouse lemurs is caused by one clinical, evolving, pathological process. The ability to follow this pathology non invasively by MRI will allow to further characterize it and evaluate its relationship with neuropathological lesions that are involved in human diseases such as Alzheimer.
PMCID: PMC2888951  PMID: 19564059
Alzheimer's disease; amyloid; animal models; atrophy; MRI; Tau
12.  Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus 
PLoS ONE  2012;7(3):e34289.
The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day−1·kg−1). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes.
PMCID: PMC3316613  PMID: 22479589
13.  Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon 
The European journal of neuroscience  2010;31(12):2166-2177.
The Ca2+-binding proteins (CBPs) calbindin D28k, calretinin and parvalbumin are phenotypic markers of functionally diverse subclasses of neurons in the adult brain. The developmental dynamics of CBP expression are precisely timed: calbindin and calretinin are present in prospective cortical interneurons from mid-gestation, while parvalbumin only becomes expressed during the early postnatal period in rodents. Secretagogin (scgn) is a CBP cloned from pancreatic β and neuroendocrine cells. We hypothesized that scgn may be expressed by particular neuronal contingents during prenatal development of the mammalian telencephalon. We find that scgn is expressed in neurons transiting in the subpallial differentiation zone by embryonic day (E) 11 in mouse. From E12, scgn+ cells commute towards the extended amygdala and colonize the bed nucleus of stria terminalis, interstitial nucleus of the posterior limb of the anterior commissure, dorsal substantia innominata (SI), and the central and medial amygdaloid nuclei. Scgn+ neurons can acquire a cholinergic phenotype in the SI or differentiate into GABA cells in the central amygdala. We also uncover phylogenetic differences in scgn expression since this CBP defines not only neurons destined to the extended amygdala but also cholinergic projection cells and cortical pyramidal cells in the fetal non-human primate and human brains, respectively. Overall, our findings emphasize the developmentally shared origins of neurons populating the extended amygdala, and suggest that secretagogin can be relevant to the generation of functional modalities in specific neuronal circuitries.
PMCID: PMC2917754  PMID: 20529129
Ca2+-binding protein; extended amygdala; forebrain; mouse; primate
14.  Omega-3 Fatty Acids from Fish Oil Lower Anxiety, Improve Cognitive Functions and Reduce Spontaneous Locomotor Activity in a Non-Human Primate 
PLoS ONE  2011;6(6):e20491.
Omega-3 (ω3) polyunsaturated fatty acids (PUFA) are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory) that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus), a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group). Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05), while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001), a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty acids may represent a valuable dietary strategy to improve behavioural and cognitive functions.
PMCID: PMC3110190  PMID: 21666750
15.  Cognitive Performances Are Selectively Enhanced during Chronic Caloric Restriction or Resveratrol Supplementation in a Primate 
PLoS ONE  2011;6(1):e16581.
Effects of an 18-month treatment with a moderate, chronic caloric restriction (CR) or an oral supplementation with resveratrol (RSV), a potential CR mimetic, on cognitive and motor performances were studied in non-human primates, grey mouse lemurs (Microcebus murinus).
Thirty-three adult male mouse lemurs were assigned to three different groups: a control (CTL) group fed ad libitum, a CR group fed 70% of the CTL caloric intake, and an RSV group (RSV supplementation of 200−−1) fed ad libitum. Three different cognitive tests, two motor tests, one emotional test and an analysis of cortisol level were performed in each group.
Compared to CTL animals, CR or RSV animals did not show any change in motor performances evaluated by rotarod and jump tests, but an increase in spontaneous locomotor activity was observed in both groups. Working memory was improved by both treatments in the spontaneous alternation task. Despite a trend for CR group, only RSV supplementation increased spatial memory performances in the circular platform task. Finally, none of these treatments induced additional stress to the animals as reflected by similar results in the open field test and cortisol analyses compared to CTL animals.
The present data provided the earliest evidence for a beneficial effect of CR or RSV supplementation on specific cognitive functions in a primate. Taken together, these results suggest that RSV could be a good candidate to mimic long-term CR effects and support the growing evidences that nutritional interventions can have beneficial effects on brain functions even in adults.
PMCID: PMC3031601  PMID: 21304942
16.  Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity 
BMC Physiology  2010;10:11.
Resveratrol, a natural polyphenolic compound, was shown to protect rodents against high-fat-diet induced diabesity by boosting energy metabolism. To the best of our knowledge, no data is yet available on the effects of resveratrol in non-human primates. Six non-human heterotherm primates (grey mouse lemurs, Microcebus murinus) were studied during four weeks of dietary supplementation with resveratrol (200 mg/kg/day) during their winter body-mass gain period. Body mass, spontaneous energy intake, resting metabolic rate, spontaneous locomotor activity and daily variations in body temperature were measured. In addition, the plasma levels of several gut hormones involved in satiety control were evaluated.
Resveratrol reduced the seasonal body-mass gain by concomitantly decreasing energy intake by 13% and increasing resting metabolic rate by 29%. Resveratrol supplementation inhibited the depth of daily torpor, an important energy-saving process in this primate. The daily amount of locomotor activity remained unchanged. Except for an increase in the glucose-dependent insulinotropic polypeptide, a gut hormone known to promote mobilization of fat stores, no major change in satiety hormone plasma levels was observed under resveratrol supplementation.
These results suggest that in a non-human primate, resveratrol reduces body-mass gain by increasing satiety and resting metabolic rate, and by inhibiting torpor expression. The measured anorectic gut hormones did not seem to play a major role in these observations.
PMCID: PMC2903570  PMID: 20569453
17.  Caloric restriction or resveratrol supplementation and ageing in a non-human primate: first-year outcome of the RESTRIKAL study in Microcebus murinus 
Age  2010;33(1):15-31.
A life-long follow-up of physiological and behavioural functions was initiated in 38-month-old mouse lemurs (Microcebus murinus) to test whether caloric restriction (CR) or a potential mimetic compound, resveratrol (RSV), can delay the ageing process and the onset of age-related diseases. Based on their potential survival of 12 years, mouse lemurs were assigned to three different groups: a control (CTL) group fed ad libitum, a CR group fed 70% of the CTL caloric intake and a RSV group (200 mg/–1) fed ad libitum. Since this prosimian primate exhibits a marked annual rhythm in body mass gain during winter, animals were tested throughout the year to assess body composition, daily energy expenditure (DEE), resting metabolic rate (RMR), physical activity and hormonal levels. After 1 year, all mouse lemurs seemed in good health. CR animals showed a significantly decreased body mass compared with the other groups during long day period only. CR or RSV treatments did not affect body composition. CR induced a decrease in DEE without changes in RMR, whereas RSV induced a concomitant increase in DEE and RMR without any obvious modification of locomotor activity in both groups. Hormonal levels remained similar in each group. In summary, after 1 year of treatment CR and RSV induced differential metabolic responses but animals successfully acclimated to their imposed diets. The RESTRIKAL study can now be safely undertaken on a long-term basis to determine whether age-associated alterations in mouse lemurs are delayed with CR and if RSV can mimic these effects.
PMCID: PMC3063642  PMID: 20532988
Ageing; Food restriction; Resveratrol; Energy balance; Biomarkers; Doubly labelled water method
18.  The Grey Mouse Lemur Uses Season-Dependent Fat or Protein Sparing Strategies to Face Chronic Food Restriction 
PLoS ONE  2010;5(1):e8823.
During moderate calorie restriction (CR) the heterotherm Microcebus murinus is able to maintain a stable energy balance whatever the season, even if only wintering animals enter into torpor. To understand its energy saving strategies to respond to food shortages, we assessed protein and energy metabolisms associated with wintering torpor expression or summering torpor avoidance. We investigated body composition, whole body protein turnover, and daily energy expenditure (DEE), during a graded (40 and 80%) 35-day CR in short-days (winter; SD40 and SD80, respectively) and long-days (summer; LD40 and LD80, respectively) acclimated animals. LD40 animals showed no change in fat mass (FM) but a 12% fat free mass (FFM) reduction. Protein balance being positive after CR, the FFM loss was early and rapid. The 25% DEE reduction, in LD40 group was mainly explained by FFM changes. LD80 animals showed a steady body mass loss and were excluded from the CR trial at day 22, reaching a survival-threatened body mass. No data were available for this group. SD40 animals significantly decreased their FM level by 21%, but maintained FFM. Protein sparing was achieved through a 35 and 39% decrease in protein synthesis and catabolism (protein turnover), respectively, overall maintaining nitrogen balance. The 21% reduction in energy requirement was explained by the 30% nitrogen flux drop but also by torpor as DEE FFM-adjusted remained 13% lower compared to ad-libitum. SD80 animals were unable to maintain energy and nitrogen balances, losing both FM and FFM. Thus summering mouse lemurs equilibrate energy balance by a rapid loss of active metabolic mass without using torpor, whereas wintering animals spare protein and energy through increased torpor expression. Both strategies have direct fitness implication: 1) to maintain activities at a lower body size during the mating season and 2) to preserve an optimal wintering muscle mass and function.
PMCID: PMC2809095  PMID: 20098678
19.  Impaired Control of Body Cooling during Heterothermia Represents the Major Energetic Constraint in an Aging Non-Human Primate Exposed to Cold 
PLoS ONE  2009;4(10):e7587.
Daily heterothermia is used by small mammals for energy and water savings, and seems to be preferentially exhibited during winter rather than during summer. This feature induces a trade-off between the energy saved during daily heterothermia and the energy cost of arousal, which can impact energy balance and survival under harsh environmental conditions. Especially, aging may significantly affect such trade off during cold-induced energy stress, but direct evidences are still lacking. We hypothesized that aging could alter the energetics of daily heterothermia, and that the effects could differ according to season. In the gray mouse lemur (Microcebus murinus), a non-human primate species which exhibits daily heterothermia, we investigated the effects of exposures to 25 and 12°C on body composition, energy balance, patterns of heterothermia and water turnover in adult (N = 8) and aged animals (N = 7) acclimated to winter-like or summer-like photoperiods.
Acclimation to summer prevented animals from deep heterothermia, even during aging. During winter, adult animals at 12°C and aged animals at 25°C exhibited low levels of energy expenditure with minor modulations of heterothermia. The major effects of cold were observed during winter, and were particularly pronounced in aged mouse lemurs which exhibited deep heterothermia phases. Body composition was not significantly affected by age and could not explain the age-related differences in heterothermia patterns. However, aging was associated with increased levels of energy expenditure during cold exposure, in concomitance with impaired energy balance. Interestingly, increased energy expenditure and depth of heterothermia phases were strongly correlated.
In conclusion, it appeared that the exhibition of shallow heterothermia allowed energy savings during winter in adult animals only. Aged animals exhibited deep heterothermia and increased levels of energy expenditure, impairing energy balance. Thus, an impaired control of the heterothermic process induced high energy costs in the aging mouse lemur exposed to cold.
PMCID: PMC2761491  PMID: 19851464
20.  A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates 
PLoS Genetics  2009;5(10):e1000688.
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.
Author Summary
Most receptors of natural killer (NK) cells interact with highly polymorphic major histocompatibility complex (MHC) class I molecules and thereby regulate the activity of NK cells against infected or malignant target cells. Whereas humans, apes, and Old and New World monkeys use the family of killer cell immunoglobulin-like receptors (KIR) as highly diverse NK cell receptors, this function is performed in rodents by the diverse family of lectin-like receptors Ly49. When did this functional separation occur in evolution? We followed this by investigating lemurs, primates that are distantly related to humans. We show here that lemurs employ the CD94/NKG2 family as their highly diversified NK cell receptors. The CD94/NKG2 receptors also belong to the lectin-like receptor family, but are rather conserved in “higher” primates and rodents. We could further demonstrate that lemurs have a single Ly49 gene like other primates but lack functional KIR genes of the KIR3DL lineage and show major deviations in their MHC class I genomic organisation. Thus, lemurs have evolved a “third way” of polymorphic and diverse NK cell receptors. In addition, the multiplied lemur CD94/NKG2 receptors can be freely combined, thereby forming diverse receptors. This is, therefore, the first description of some combinatorial diversity of NK cell receptors.
PMCID: PMC2757895  PMID: 19834558

Results 1-20 (20)