Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Visualization of embolism formation in the xylem of liana stems using neutron radiography 
Annals of Botany  2013;111(4):723-730.
Background and Aims
Cold neutron radiography was applied to directly observe embolism in conduits of liana stems with the aim to evaluate the suitability of this method for studying embolism formation and repair. Potential advantages of this method are a principally non-invasive imaging approach with low energy dose compared with synchrotron X-ray radiation, a good spatial and temporal resolution, and the possibility to observe the entire volume of stem portions with a length of several centimetres at one time.
Complete and cut stems of Adenia lobata, Aristolochia macrophylla and Parthenocissus tricuspidata were radiographed at the neutron imaging facility CONRAD at the Helmholtz-Zentrum Berlin für Materialien und Energie, with each measurement cycle lasting several hours. Low attenuation gas spaces were separated from the high attenuation (water-containing) plant tissue using image processing.
Key results
Severe cuts into the stem were necessary to induce embolism. The formation and temporal course of an embolism event could then be successfully observed in individual conduits. It was found that complete emptying of a vessel with a diameter of 100 µm required a time interval of 4 min. Furthermore, dehydration of the whole stem section could be monitored via decreasing attenuation of the neutrons.
The results suggest that cold neutron radiography represents a useful tool for studying water relations in plant stems that has the potential to complement other non-invasive methods.
PMCID: PMC3605950  PMID: 23393096
Xylem; plant water transport; embolism; neutron radiography; Adenia lobata; Aristolochia macrophylla; Parthenocissus tricuspidata.
2.  Sorting of droplets by migration on structured surfaces 
Background: Controlled transport of microdroplets is a topic of interest for various applications. It is well known that liquid droplets move towards areas of minimum contact angle if placed on a flat solid surface exhibiting a gradient of contact angle. This effect can be utilised for droplet manipulation. In this contribution we describe how controlled droplet movement can be achieved by a surface pattern consisting of cones and funnels whose length scales are comparable to the droplet diameter.
Results: The surface energy of a droplet attached to a cone in a symmetry-preserving way can be smaller than the surface energy of a freely floating droplet. If the value of the contact angle is fixed and lies within a certain interval, then droplets sitting initially on a cone can gain energy by moving to adjacent cones.
Conclusion: Surfaces covered with cone-shaped protrusions or cavities may be devised for constructing “band-conveyors” for droplets. In our approach, it is essentially the surface structure which is varied, not the contact angle. It may be speculated that suitably patterned surfaces are also utilised in biological surfaces where a large variety of ornamentations and surface structuring are often observed.
PMCID: PMC3148036  PMID: 21977433
microdroplets; microfluidics; surface; surface energy; surface structures

Results 1-2 (2)