Search tips
Search criteria

Results 1-25 (81)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms 
Human Molecular Genetics  2013;23(4):870-877.
Using a Drosophila model of Alzheimer's disease (AD), we systematically evaluated 67 candidate genes based on AD-associated genomic loci (P < 10−4) from published human genome-wide association studies (GWAS). Genetic manipulation of 87 homologous fly genes was tested for modulation of neurotoxicity caused by human Tau, which forms neurofibrillary tangle pathology in AD. RNA interference (RNAi) targeting 9 genes enhanced Tau neurotoxicity, and in most cases reciprocal activation of gene expression suppressed Tau toxicity. Our screen implicates cindr, the fly ortholog of the human CD2AP AD susceptibility gene, as a modulator of Tau-mediated disease mechanisms. Importantly, we also identify the fly orthologs of FERMT2 and CELF1 as Tau modifiers, and these loci have been independently validated as AD susceptibility loci in the latest GWAS meta-analysis. Both CD2AP and FERMT2 have been previously implicated with roles in cell adhesion, and our screen additionally identifies a fly homolog of the human integrin adhesion receptors, ITGAM and ITGA9, as a modifier of Tau neurotoxicity. Our results highlight cell adhesion pathways as important in Tau toxicity and AD susceptibility and demonstrate the power of model organism genetic screens for the functional follow-up of human GWAS.
PMCID: PMC3900103  PMID: 24067533
2.  Control of lipid metabolism by Tachykinin in Drosophila 
Cell reports  2014;9(1):40-47.
The intestine is a key organ for lipid uptake and distribution, and abnormal intestinal lipid metabolism is associated with obesity and hyperlipidemia. Although multiple regulatory gut hormones secreted from enteroendocrine cells (EEs) regulate systemic lipid homeostasis, such as appetite control and energy balance in adipose tissue, their respective roles regarding lipid metabolism in the intestine are not well understood. We demonstrate that Tachykinins (TKs), one of the most abundant secreted peptides expressed in midgut EEs, regulate intestinal lipid production and subsequently control systemic lipid homeostasis in Drosophila, and that TKs repress lipogenesis in enterocytes (ECs) associated with the TKR99D receptor and PKA signaling. Interestingly, nutrient deprivation enhances the production of TKs in the midgut. Finally, unlike the physiological roles of TKs produced from the brain, gut-derived TKs do not affect behavior, thus demonstrating that gut TK hormones specifically regulate intestinal lipid metabolism without affecting neuronal functions.
PMCID: PMC4325997  PMID: 25263556
3.  Visualizing and Manipulating Temporal Signaling Dynamics with Fluorescence-Based Tools 
Science signaling  2014;7(319):re1.
The use of genome-wide proteomic and RNA interference approaches has moved our understanding of signal transduction from linear pathways to highly integrated networks centered on core nodes. However, probing the dynamics of flow of information through such networks remains technically challenging. In particular, how the temporal dynamics of an individual pathway can elicit distinct outcomes in a single cell type and how multiple pathways may interact sequentially or synchronously to influence cell fate remain open questions in many contexts. The development of fluorescence-based reporters and optogenetic regulators of pathway activity enables the analysis of signaling in living cells and organisms with unprecedented spatiotemporal resolution and holds the promise of addressing these key questions. We present a brief overview of the evidence for the importance of temporal dynamics in cellular regulation, introduce these fluorescence-based tools, and highlight specific studies that leveraged these tools to probe the dynamics of information flow through signaling networks. In particular, we highlight two studies in Caenorhabditis elegans sensory neurons and cultured mammalian cells that demonstrate the importance of signal dynamics in determining cellular responses.
PMCID: PMC4319366  PMID: 24692594
4.  Drosophila as a Model for Context-Dependent Tumorigenesis 
Journal of cellular physiology  2014;229(1):27-33.
Drosophila can exhibit classic hallmarks of cancer, such as evasion of apoptosis, sustained proliferation, metastasis, prolonged survival, genome instability, and metabolic reprogramming, when cancer-related genes are perturbed. In the last two decades, studies in flies have identified several tumor suppressor and oncogenes. However, the greatest strength of the fly lies in its ability to model cancer hallmarks in a variety of tissue types, which enables the study of context-dependent tumorigenesis. We review the organs and tissues that have been used to model tumor formation, and propose new strategies to maximize the potential of Drosophila in cancer research.
PMCID: PMC4034382  PMID: 23836429
5.  A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling 
Cell reports  2014;7(6):2066-2077.
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by binding to sequences within the 3′UTR of mRNAs. Because miRNAs bind to short sequences with partial complementarity, target identification is challenging. To complement the existing target prediction algorithms, we devised a systematic “reverse approach” screening platform which allows the empirical prediction of miRNA-target interactions. Using Drosophila cells, we screened the 3′UTRs of the Hedgehog pathway genes against a genome-wide miRNA library and identified both predicted and many non-predicted miRNA-target interactions. We demonstrate that miR-14 is essential for maintaining the proper level of Hedgehog signaling activity by regulating its physiological target, hedgehog. Furthermore, elevated levels of miR-14 suppress Hedgehog signaling activity by co-targeting its apparent non-physiological targets, patched and smoothened. Altogether, our systematic screening platform is a powerful approach to identifying both physiological and apparent non-physiological targets of miRNAs, which are relevant in both normal and diseased tissues.
PMCID: PMC4142207  PMID: 24931604
6.  Enteroendocrine Cells Support Intestinal Stem Cell-Mediated Homeostasis In Drosophila 
Cell reports  2014;9(1):32-39.
Intestinal stem cells in the adult Drosophila midgut are regulated by growth factors produced from the surrounding niche cells including enterocytes and visceral muscle. The role of the other major cell type, the secretory enteroendocrine cells, in regulating intestinal stem cells remains unclear. We show here that newly eclosed scute loss of function mutant flies are completely devoid of enteroendocrine cells. These enteroendocrine cell-less flies have normal ingestion and fecundity but shorter life span. Moreover, in these newly eclosed mutant flies, the diet-stimulated midgut growth that depends on the insulin-like peptide 3 expression in the surrounding muscle is defective. The depletion of Tachykinin producing enteroendocrine cells or knockdown of Tachykinin leads to a similar although less severe phenotype. These results together establish that enteroendocrine cells serve as an important link between diet and visceral muscle expression of an insulin-like growth factor to stimulate intestinal stem cell proliferation and tissue growth.
PMCID: PMC4198943  PMID: 25263551
Drosophila; DILP3; enteroendocrine cells; homeostasis; intestine; scute; stem cells; Tachykinin
7.  Inter-tissue Control of the Nucleolus via a Myokine-dependent Longevity Pathway 
Cell reports  2014;7(5):1481-1494.
Recent evidence indicates that skeletal muscle influences systemic aging but little is known on the signaling pathways and muscle-released cytokines (myokines) responsible for this inter-tissue communication. Here, we show that muscle-specific overexpression of the transcription factor Mnt decreases age-related climbing defects and extends lifespan in Drosophila. Mnt overexpression in muscle autonomously decreases the expression of nucleolar components and systemically decreases rRNA levels and the size of the nucleolus in adipocytes. This non-autonomous control of the nucleolus, a regulator of ribosome biogenesis and lifespan, relies on Myoglianin, a myokine induced by Mnt and orthologous to human GDF11 and Myostatin. Myoglianin overexpression in muscle extends lifespan and decreases nucleolar size in adipocytes by activating p38 MAPK, while Myoglianin RNAi in muscle has converse effects. Altogether, these findings highlight a key role for myokine signaling in the integration of signaling events in muscle and distant tissues during aging.
PMCID: PMC4125979  PMID: 24882005
8.  The influence of skeletal muscle on systemic aging and lifespan 
Aging cell  2013;12(6):10.1111/acel.12126.
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer’s disease, and Parkinson’s disease. Here we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the inter-tissue communication that underlies systemic aging.
PMCID: PMC3838468  PMID: 23802635
skeletal muscle aging; systemic aging; myokine signaling; exercise; inter-tissue communication during aging
9.  Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles 
Developmental biology  2013;383(2):275-284.
One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24 hrs of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis.
PMCID: PMC3991436  PMID: 24051228
10.  Muscle Mitohormesis Promotes Longevity via Systemic Repression of Insulin Signaling 
Cell  2013;155(3):10.1016/j.cell.2013.09.021.
Mitochondrial dysfunction is usually associated with aging. To systematically characterize the compensatory stress signaling cascades triggered in response to muscle mitochondrial perturbation, we analyzed a Drosophila model of muscle mitochondrial injury. We find that mild muscle mitochondrial distress preserves mitochondrial function, impedes the age-dependent deterioration of muscle function and architecture, and prolongs lifespan. Strikingly, this effect is mediated by at least two pro-longevity compensatory signaling modules: one involving a muscle-restricted redox-dependent induction of genes that regulate the mitochondrial unfolded protein response (UPRmt); and another involving the transcriptional induction of the Drosophila ortholog of insulin-like growth factor binding protein 7, which systemically antagonizes insulin signaling, and facilitates mitophagy. Given that several secreted IGF-binding proteins (IGFBPs) exist in mammals, our work raises the possibility that muscle mitochondrial injury in humans may similarly result in the secretion of IGFBPs, with important ramifications for diseases associated with aberrant insulin signaling.
PMCID: PMC3856681  PMID: 24243023
11.  A regulatory network of Drosophila germline stem cell self-renewal 
Developmental cell  2014;28(4):459-473.
Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal.
PMCID: PMC3998650  PMID: 24576427
12.  Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning 
During development, signaling pathways specify cell fates by activating transcriptional programs in response to extracellular signals. Extensive studies in the past 30 years have revealed that surprisingly few pathways exist to regulate developmental programs and that dysregulation of these can lead to human diseases, including cancer. Although these pathways use distinct signaling components and signaling strategies, a number of common themes have emerged regarding their organization and regulation in time and space. Examples from Drosophila, such as Notch, Hedgehog, Wingless/WNT, BMP (bone morphogenetic proteins), EGF (epidermal growth factor), and FGF (fibroblast growth factor) signaling, illustrate their abilities to act either at a short range or over a long distance, and in some instances to generate morphogen gradients that pattern fields of cells in a concentration-dependent manner. They also show how feedback loops and transcriptional cascades are part of the logic of developmental regulation.
Surprisingly few signaling pathways (11 classes) regulate developmental programs. Each pathway does not control a specific biological process; rather, each pathway can elicit diverse effects, depending on the state of the cell.
PMCID: PMC3405863  PMID: 22855721
13.  Integrating protein-protein interaction networks with phenotypes reveals signs of interactions 
Nature methods  2013;11(1):10.1038/nmeth.2733.
A major objective of systems biology is to organize molecular interactions as networks and to characterize information-flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the “signs” of interactions (i.e. activation/inhibition relationships). We constructed a Drosophila melanogaster signed PPI network, consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes Enolase and Aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation/inhibition relationships between physically interacting proteins within signaling pathways will impact our understanding of many biological functions, including signal transduction and mechanisms of disease.
PMCID: PMC3877743  PMID: 24240319
14.  Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis 
BMC Bioinformatics  2014;15:192.
RNA interference (RNAi) is an effective and important tool used to study gene function. For large-scale screens, RNAi is used to systematically down-regulate genes of interest and analyze their roles in a biological process. However, RNAi is associated with off-target effects (OTEs), including microRNA (miRNA)-like OTEs. The contribution of reagent-specific OTEs to RNAi screen data sets can be significant. In addition, the post-screen validation process is time and labor intensive. Thus, the availability of robust approaches to identify candidate off-targeted transcripts would be beneficial.
Significant efforts have been made to eliminate false positive results attributable to sequence-specific OTEs associated with RNAi. These approaches have included improved algorithms for RNAi reagent design, incorporation of chemical modifications into siRNAs, and the use of various bioinformatics strategies to identify possible OTEs in screen results. Genome-wide Enrichment of Seed Sequence matches (GESS) was developed to identify potential off-targeted transcripts in large-scale screen data by seed-region analysis. Here, we introduce a user-friendly web application that provides researchers a relatively quick and easy way to perform GESS analysis on data from human or mouse cell-based screens using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), as well as for Drosophila screens using shRNAs. Online GESS relies on up-to-date transcript sequence annotations for human and mouse genes extracted from NCBI Reference Sequence (RefSeq) and Drosophila genes from FlyBase. The tool also accommodates analysis with user-provided reference sequence files.
Online GESS provides a straightforward user interface for genome-wide seed region analysis for human, mouse and Drosophila RNAi screen data. With the tool, users can either use a built-in database or provide a database of transcripts for analysis. This makes it possible to analyze RNAi data from any organism for which the user can provide transcript sequences.
PMCID: PMC4073188  PMID: 24934636
RNAi; Off-target effects; Data analysis; Seed region; miRNA; siRNA; shRNA; High-throughput screening
15.  The Hippo Signaling Pathway Interactome 
Science (New York, N.Y.)  2013;342(6159):737-740.
The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNA interference regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.
PMCID: PMC3951131  PMID: 24114784
16.  The Circadian Clock Gates the Intestinal Stem Cell Regenerative State 
Cell reports  2013;3(4):996-1004.
The intestine has evolved under constant environmental stresses, because an animal may ingest harmful pathogens or chemicals at any time during its lifespan. Following damage, intestinal stem cells (ISCs) regenerate the intestine by proliferating to replace dying cells. ISCs from diverse animals are remarkably similar, and the Wnt, Notch, and Hippo signaling pathways, important regulators of mammalian ISCs, are conserved from flies to humans. Unexpectedly, we identified the transcription factor period, a component of the circadian clock, to be critical for regeneration, which itself follows a circadian rhythm. We discovered hundreds of transcripts that are regulated by the clock during intestinal regeneration, including components of stress response and regeneration pathways. Disruption of clock components leads to arrhythmic ISC divisions, revealing their underappreciated role in the healing process.
PMCID: PMC3982394  PMID: 23583176
17.  The Homeobox Transcription Factor Cut Coordinates Patterning and Growth During Drosophila Airway Remodeling 
Science signaling  2013;6(263):ra12.
A fundamental question in developmental biology is how tissue growth and patterning are coordinately regulated to generate complex organs with characteristic shapes and sizes. We showed that in the developing primordium that produces the Drosophila adult trachea, the homeobox transcription factor Cut regulates both growth and patterning, and its effects depend on its abundance. Quantification of the abundance of Cut in the developing airway progenitors during late larval stage 3 revealed that the cells of the developing trachea had different amounts of Cut, with the most proliferative region having an intermediate amount of Cut and the region lacking Cut exhibiting differentiation. By manipulating Cut abundance, we showed that Cut functioned in different regions to regulate proliferation or patterning. Transcriptional profiling of progenitor populations with different amounts of Cut revealed the Wingless (known as Wnt in vertebrates) and Notch signaling pathways as positive and negative regulators of cut expression, respectively. Furthermore, we identified the gene encoding the receptor Breathless (Btl, known as fibroblast growth factor receptor in vertebrates) as a transcriptional target of Cut. Cut inhibited btl expression and tracheal differentiation to maintain the developing airway cells in a progenitor state. Thus, Cut functions in the integration of patterning and growth in a developing epithelial tissue.
PMCID: PMC3982146  PMID: 23423438
18.  Signaling in time and space 
BMC Genomics  2014;15(Suppl 2):O18.
PMCID: PMC4075457
19.  Conserved Regulators of Nucleolar Size Revealed by Global Phenotypic Analyses 
Science signaling  2013;6(289):ra70.
Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I–mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I–mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry–based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.
PMCID: PMC3964804  PMID: 23962978
20.  Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer 
Cancer cell  2013;23(3):390-405.
Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. SERCA calcium channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies “credential” SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
PMCID: PMC3709972  PMID: 23434461
21.  Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning 
During development, signaling pathways specify cell fates by activating transcriptional programs in response to extracellular signals. Extensive studies in the past 30 years have revealed that surprisingly few pathways exist to regulate developmental programs and that dysregulation of these can lead to human diseases, including cancer. Although these pathways use distinct signaling components and signaling strategies, a number of common themes have emerged regarding their organization and regulation in time and space. Examples from Drosophila, such as Notch, Hedgehog, Wingless/WNT, BMP (bone morphogenetic proteins), EGF (epidermal growth factor), and FGF (fibroblast growth factor) signaling, illustrate their abilities to act either at a short range or over a long distance, and in some instances to generate morphogen gradients that pattern fields of cells in a concentration-dependent manner. They also show how feedback loops and transcriptional cascades are part of the logic of developmental regulation.
PMCID: PMC3405863  PMID: 22855721
22.  Receptor Tyrosine Kinases in Drosophila Development 
Cold Spring Harbor perspectives in biology  2013;5(6):10.1101/cshperspect.a009050 a009050.
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
PMCID: PMC3660834  PMID: 23732470
23.  Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases 
Disease Models & Mechanisms  2014;7(3):343-350.
Over the past decade, numerous reports have underscored the similarities between the metabolism of Drosophila and vertebrates, with the identification of evolutionarily conserved enzymes and analogous organs that regulate carbohydrate and lipid metabolism. It is now well established that the major metabolic, energy-sensing and endocrine signaling networks of vertebrate systems are also conserved in flies. Accordingly, studies in Drosophila are beginning to unravel how perturbed energy balance impinges on lifespan and on the ensuing diseases when energy homeostasis goes awry. Here, we highlight several emerging concepts that are at the nexus between obesity, nutrient sensing, metabolic homeostasis and aging. Specifically, we summarize the endocrine mechanisms that regulate carbohydrate and lipid metabolism, and provide an overview of the neuropeptides that regulate feeding behavior. We further describe the various efforts at modeling the effects of high-fat or -sugar diets in Drosophila and the signaling mechanisms involved in integrating organ function. Finally, we draw attention to some of the cardinal discoveries made with these disease models and how these could spur new research questions in vertebrate systems.
PMCID: PMC3944494  PMID: 24609035
Metabolic homeostasis; Nutrient sensing; Drosophila
24.  A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions between Discrete Cell Shapes 
Nature cell biology  2013;15(7):860-871.
The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila hemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.
PMCID: PMC3712499  PMID: 23748611
25.  Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy 
PLoS Biology  2013;11(11):e1001708.
A novel Drosophila model system of chloroquine myopathy reveals how glycogen is targeted to the lysosome and what the significance of this process is for muscle cells.
Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8.
Author Summary
Lysosomes are organelles that work as a disposal system for the cell. It is known that lysosomes can degrade glycogen and that defects in this function trigger the accumulation of vesicles containing glycogen in animals that lead to vacuolar myopathies—diseases that result in muscle weakness. However, it remains unclear how and why glycogen is degraded through this system, and what significance it has for the pathology of such diseases. Here, we addressed these questions by establishing a fruitfly model system to study glycogen autophagy in skeletal muscles. By feeding the flies chloroquine (CQ), we induce a vacuolar myopathy associated with massive accumulation of glycogen-filled vesicles, and assay the role of autophagy and glycogen metabolic enzymes in this process. We show that CQ-induced glycogen autophagy is completely dependent on the core conserved autophagy genes and that this autophagy is triggered by nutrient deprivation in a Tor-dependent manner. Interestingly, while glycogen autophagy and enzymatic glycogen breakdown can compensate for each other, concurrent inhibition of both systems blocks glycogen breakdown. Finally, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of glycogen synthase—the main enzyme involved in converting glucose to glycogen—in regulating autophagy through its interaction with the autophagosome.
PMCID: PMC3825659  PMID: 24265594

Results 1-25 (81)