PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Drosophila twin spot clones reveal cell division dynamics in regenerating imaginal discs 
Developmental biology  2011;356(2):576-587.
Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.
doi:10.1016/j.ydbio.2011.06.018
PMCID: PMC3144724  PMID: 21722631
regeneration; transdetermination; cell cycle; somatic cell immortality
2.  The Twin Spot Generator for differential Drosophila lineage analysis 
Nature methods  2009;6(8):600-602.
In Drosophila, widely-used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the Twin Spot Generator technique (TSG) and demonstrate that through mitotic recombination, TSG generates green and red twin spots in internal fly tissues, visible even as single cells. We discuss the wide applications of TSG to lineage and genetic mosaic studies.
doi:10.1038/nmeth.1349
PMCID: PMC2720837  PMID: 19633664

Results 1-2 (2)