PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Genome-Wide Screen Identifies Genes That Affect Somatic Homolog Pairing in Drosophila 
G3: Genes|Genomes|Genetics  2012;2(7):731-740.
In Drosophila and other Dipterans, homologous chromosomes are in close contact in virtually all nuclei, a phenomenon known as somatic homolog pairing. Although homolog pairing has been recognized for over a century, relatively little is known about its regulation. We performed a genome-wide RNAi-based screen that monitored the X-specific localization of the male-specific lethal (MSL) complex, and we identified 59 candidate genes whose knockdown via RNAi causes a change in the pattern of MSL staining that is consistent with a disruption of X-chromosomal homolog pairing. Using DNA fluorescent in situ hybridization (FISH), we confirmed that knockdown of 17 of these genes has a dramatic effect on pairing of the 359 bp repeat at the base of the X. Furthermore, dsRNAs targeting Pr-set7, which encodes an H4K20 methyltransferase, cause a modest disruption in somatic homolog pairing. Consistent with our results in cultured cells, a classical mutation in one of the strongest candidate genes, pebble (pbl), causes a decrease in somatic homolog pairing in developing embryos. Interestingly, many of the genes identified by our screen have known roles in diverse cell-cycle events, suggesting an important link between somatic homolog pairing and the choreography of chromosomes during the cell cycle.
doi:10.1534/g3.112.002840
PMCID: PMC3385979  PMID: 22870396
RNAi; homolog pairing; male-specific lethal; cell cycle; interchromosomal interaction
2.  Simplified Insertion of Transgenes Onto Balancer Chromosomes via Recombinase-Mediated Cassette Exchange 
G3: Genes|Genomes|Genetics  2012;2(5):551-553.
Balancer chromosomes are critical tools for Drosophila genetics. Many useful transgenes are inserted onto balancers using a random and inefficient process. Here we describe balancer chromosomes that can be directly targeted with transgenes of interest via recombinase-mediated cassette exchange (RMCE).
doi:10.1534/g3.112.002097
PMCID: PMC3362938  PMID: 22670225
RMCE; targeted transgenesis; phiC31; Drosophila; balancer
3.  The Twin Spot Generator for differential Drosophila lineage analysis 
Nature methods  2009;6(8):600-602.
In Drosophila, widely-used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the Twin Spot Generator technique (TSG) and demonstrate that through mitotic recombination, TSG generates green and red twin spots in internal fly tissues, visible even as single cells. We discuss the wide applications of TSG to lineage and genetic mosaic studies.
doi:10.1038/nmeth.1349
PMCID: PMC2720837  PMID: 19633664

Results 1-3 (3)