Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Patient Portal Preferences: Perspectives on Imaging Information 
Patient portals have the potential to provide content that is specifically tailored to a patient's information needs based on diagnoses and other factors. In this work, we conducted a survey of 41 lung cancer patients at an outpatient lung cancer clinic at the medical center of the University of California Los Angeles, to gain insight into these perceived information needs and opinions on the design of a portal to fulfill them. We found that patients requested access to information related to diagnosis and imaging, with more than half of the patients reporting that they did not anticipate an increase in anxiety due to access to medical record information via a portal. We also found that patient educational background did not lead to a significant difference in desires for explanations of reports and definitions of terms.
PMCID: PMC4504683  PMID: 26191535
2.  PGE2-driven Expression of c-Myc and OncomiR-17-92 Contributes to Apoptosis Resistance in NSCLC 
Molecular cancer research : MCR  2014;12(5):765-774.
Aberrant expression of miRNAs with oncogenic capacities (oncomiRs) has been described for several different malignancies. The first identified oncomiR, miR-17-92, is frequently overexpressed in a variety of cancers and its targets include the tumor suppressor PTEN. The transcription factor c-Myc (MYC) plays a central role in proliferative control and is rapidly up-regulated upon mitogenic stimulation. Expression of c-Myc is frequently deregulated in tumors, facilitating proliferation and inhibiting terminal differentiation. The c-Myc-regulated network comprises a large number of transcripts including those encoding miRNAs. Here prostaglandin E2 (PGE2) exposure rapidly up-regulates expression of the MYC gene followed by the elevation of miR-17-92 levels, which in turn suppresses PTEN expression; thus, enhancing apoptosis resistance in non-small cell lung cancer (NSCLC) cells. Knockdown of MYC expression or the miR-17-92 cluster effectively reverses this outcome. Similarly, miR-17-92 levels are significantly elevated in NSCLC cells ectopically expressing cyclooxygenase-2. Importantly, circulating miR-17-92 was elevated in the blood of lung cancer patients as compared to subjects at risk for developing lung cancer. Furthermore, in patients treated with celecoxib, miR-17-92 levels were significantly reduced. These data demonstrate that PGE2, abundantly produced by NSCLC and inflammatory cells in the tumor microenvironment, is able to stimulate cell proliferation and promote resistance to pharmacologically induced apoptosis in a c-Myc and miR-17-92-dependent manner.
This study describes a novel mechanism, involving c-Myc and miR-17-92, which integrates cell proliferation and apoptosis resistance.
PMCID: PMC4020971  PMID: 24469837
PGE2; c-myc; oncomir; apoptosis resistance; lung cancer
3.  Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer 
Dichloroacetate (DCA) is a highly bioavailable small molecule that inhibits pyruvate dehydrogenase kinase, promoting glucose oxidation and reversing the glycolytic phenotype in preclinical cancer studies. We designed this open label phase II trial to determine the response rate, safety, and tolerability of oral DCA in patients with metastatic breast cancer and advanced stage NSCLC.
Materials and Methods
This trial was conducted with DCA 6.25 mg/kg orally twice daily in previously treated stage IIIB/IV non-small cell lung cancer (NSCLC) or stage IV breast cancer. Growth inhibition by DCA was also evaluated in a panel of 54 NSCLC cell lines with and without cytotoxic chemotherapeutics (cisplatin and docetaxel) in normoxic and hypoxic conditions.
Results and Conclusions
Under normoxic conditions in vitro, single agent IC50 was > 2 mM for all evaluated cell lines. Synergy with cisplatin was seen in some cell lines under hypoxic conditions. In the clinical trial, after seven patients were enrolled, the study was closed based on safety concerns. The only breast cancer patient had stable disease after 8 weeks, quickly followed by progression in the brain. Two patients withdrew consent within a week of enrollment. Two patients had disease progression prior to the first scheduled scans. Within one week of initiating DCA, one patient died suddenly of unknown cause, and one experienced a fatal pulmonary embolism. We conclude that patients with previously treated advanced NSCLC did not benefit from oral DCA. In the absence of a larger controlled trial, firm conclusions regarding the association between these adverse events and DCA are unclear. Further development of DCA should be in patients with longer life expectancy, in whom sustained therapeutic levels can be achieved, and potentially in combination with cisplatin.
PMCID: PMC3939783  PMID: 24442098
dichloroacetate; non-small cell lung cancer; cisplatin
4.  Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs 
Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials.
To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival.
From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival.
Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies.
Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival.
From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who did not receive genotype-directed therapy (propensity score–adjusted hazard ratio, 0.69 [95% CI, 0.53-0.9], P = .006).
Actionable drivers were detected in 64% of lung adenocarcinomas. Multiplexed testing aided physicians in selecting therapies. Although individuals with drivers receiving a matched targeted agent lived longer, randomized trials are required to determine if targeting therapy based on oncogenic drivers improves survival.
PMCID: PMC4163053  PMID: 24846037
6.  Development of transcriptomic biomarker signature in human saliva to detect lung cancer 
Lung cancer is the leading cause of cancer death for both men and women worldwide. Since most of the symptoms found for lung cancer are nonspecific, diagnosis is mostly done at late and progressed stage with the consecutive poor therapy outcome. Effective early detection techniques are sorely needed. The emerging field of salivary diagnostics could provide scientifically credible, easy-to-use, non-invasive and cost-effective detection methods. Recent advances have allowed us to develop discriminatory salivary biomarkers for a variety of diseases from oral to systematic diseases. In this study, salivary transcriptomes of lung cancer patients were profiled and led to the discovery and pre-validation of seven highly discriminatory transcriptomic salivary biomarkers (BRAF, CCNI, EGRF, FGF19, FRS2, GREB1, and LZTS1). The logistic regression model combining five of the mRNA biomarkers (CCNI, EGFR, FGF19, FRS2, and GREB1) could differentiate lung cancer patients from normal control subjects, yielding AUC value of 0.925 with 93.75 % sensitivity and 82.81 % specificity in the pre-validation sample set. These salivary mRNA biomarkers possess the discriminatory power for the detection of lung cancer. This report provides the proof of concept of salivary biomarkers for the non-invasive detection of the systematic disease. These results poised the salivary biomarkers for the initiation of a multi-center validation in a definitive clinical context.
PMCID: PMC4121486  PMID: 22689099
Human saliva; Transcriptomic; Lung cancer; Biomarker signature; Early detection
7.  The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth 
Molecular cancer therapeutics  2013;12(6):890-900.
Heat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for numerous client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. We sought to define preclinical effects of the HSP90 inhibitor NVP-AUY922 and identify predictors of response. We assessed in vitro effects of NVP-AUY922 on proliferation and protein expression in NSCLC cell lines. We evaluated gene expression changes induced by NVP-AUY922 exposure. Xenograft models were evaluated for tumor control and biological effects. NVP-AUY922 potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 < 100 nM. IC100 (complete inhibition of proliferation) < 40 nM was seen in 36 of 41 lines. Consistent gene expression changes after NVP-AUY922 exposure involved a wide range of cellular functions, including consistently decreased dihydrofolate reductase (DHFR) after exposure. NVP-AUY922 slowed growth of A549 (KRAS mutant) xenografts, and achieved tumor stability and decreased epidermal growth factor receptor (EGFR) protein expression in H1975 xenografts, a model harboring a sensitizing and a resistance mutation for EGFR tyrosine kinase inhibitors in the EGFR gene. This data will help inform the evaluation of correlative data from a recently completed phase II NSCLC trial and a planned phase IB trial of NVP-AUY922 in combination with pemetrexed in NSCLC.
PMCID: PMC3681857  PMID: 23493311
NVP-AUY922; HSP90; Lung Cancer
8.  Uncertainty and psychological adjustment in patients with lung cancer 
Psycho-oncology  2012;22(6):1396-1401.
For many patients with lung cancer, disease progression occurs without notice or with vague symptoms, and unfortunately, most treatments are not curative. Given this unpredictability, we hypothesized the following: (1) poorer psychological adjustment (specifically, more depressive symptoms, higher perceptions of stress, and poorer emotional well-being) would be associated with higher intolerance for uncertainty, higher perceived illness-related ambiguity, and their interaction; and (2) greater avoidance would mediate associations between higher intolerance of uncertainty and poorer psychological adjustment.
Participants (N = 49) diagnosed with lung cancer at least 6 months prior to enrollment completed the Center for Epidemiologic Studies – Depression Scale, the Functional Assessment of Cancer Therapy – Lung Emotional Well-being subscale, the Perceived Stress scale, the Intolerance of Uncertainty scale, the Mishel Uncertainty in Illness Scale Ambiguity subscale, the Impact of Event – Revised Avoidance subscale, and the Short-scale Eysenck Personality Questionnaire – Revised Neuroticism subscale. Mean age was 64.2 years (standard deviation [SD] = 11.0), mean years of education was 15.6 (SD = 3.1), and 71.4% were female. Hypotheses were tested with regression analyses, adjusted for neuroticism.
Higher perceptions of stress and poorer emotional well-being were associated with higher levels of intolerance of uncertainty and higher perceived illness-related ambiguity. Non-somatic depressive symptoms were associated with higher levels of intolerance of uncertainty. Avoidance was found to mediate relations of intolerance of uncertainty with non-somatic depressive symptoms and emotional well-being only.
Findings suggest that interventions to address avoidance and intolerance of uncertainty in individuals with lung cancer may help improve psychological adjustment.
PMCID: PMC4036804  PMID: 22887017
9.  Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small cell lung cancer 
Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non-small cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC.
We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway either individually or in combination.
The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR mutant, erlotinib-resistant H1975 line. ERα, ERβ, progesterone receptor (PR)-A, PR-B and aromatase proteins are expressed in all lines to varying degrees, with trends towards lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ERα gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited.
These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition.
PMCID: PMC3573351  PMID: 23399957
epidermal growth factor receptor; estrogen; estrogen receptor; lung cancer; fulvestrant
11.  Characteristics of Lung Cancers Harboring NRAS Mutations 
We sought to determine the frequency and clinical characteristics of patients with lung cancer harboring NRAS mutations. We used preclinical models to identify targeted therapies likely to be of benefit against NRAS mutant lung cancer cells.
Patients and Methods
We reviewed clinical data from patients whose lung cancers were identified at 6 institutions or reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) to harbor NRAS mutations. 6 NRAS mutant cell lines were screened for sensitivity against inhibitors of multiple kinases (i.e. EGFR, ALK, MET, IGF-1R, BRAF, PI3K and MEK).
Among 4562 patients with lung cancers tested, NRAS mutations were present in 30 (0.7%; 95% confidence interval, 0.45% to 0.94%); 28 of these had no other driver mutations. 83% had adenocarcinoma histology with no significant differences in gender. While 95% of patients were former or current smokers, smoking-related G:C>T:A transversions were significantly less frequent in NRAS mutated lung tumors compared to KRAS-mutant NSCLCs (NRAS: 13% (4/30), KRAS: 66% (1772/2733), p<0.00000001). 5 of 6 NRAS mutant cell lines were sensitive to the MEK inhibitors, selumetinib and trametinib, but not to other inhibitors tested.
NRAS mutations define a distinct subset of lung cancers (~1%) with potential sensitivity to MEK inhibitors. While NRAS mutations are more common in current/former smokers, the types of mutations are not those classically associated with smoking.
PMCID: PMC3643999  PMID: 23515407
NRAS mutation; EGFR mutation; KRAS mutation; lung cancer; non-small cell lung cancer; driver mutation; MEK inhibitor; erlotinib; gefitinib; crizotinib
12.  Mitotic Inhibitors 
PMCID: PMC3812544  PMID: 22005532
13.  The role of estrogen, progesterone and aromatase in human non-small-cell lung cancer 
Lung cancer management  2012;1(4):259-272.
Lung cancer is the leading cause of cancer-related deaths in both men and women worldwide. Despite advances in treatment, patients have few effective therapeutic options and survival rates remain low. Emerging evidence suggests that the hormones estrogen and progesterone play a key role in the progression of non-small-cell lung cancer (NSCLC). The aromatase enzyme, which is responsible for a key step in estrogen biosynthesis, elicits higher levels of estrogen in lung tumors as well as in metastases compared with nonmalignant tissues. Thus, aromatase may prove to be a key predictive biomarker for treatment of NSCLC. Epidemiologic and preclinical data show estrogens play a critical role in lung tumor development and progression. Two estrogen receptors, α and β, are expressed in normal and in cancerous lung epithelium, and estrogen promotes gene transcription that stimulates cell proliferation and inhibits cell death. Furthermore, expression of both forms of estrogen receptor, progesterone receptor and aromatase in NSCLC specimens has been correlated with worse clinical outcomes. Combination therapies that include estrogen receptor downregulators and aromatase inhibitors are currently being assessed in Phase I–II clinical trials among patients with advanced NSCLC. Results will help guide future lung cancer management decisions, with a goal of achieving more effective and less toxic treatments for patients.
PMCID: PMC3643508  PMID: 23650476
14.  Issues Surrounding Clinical Trial Endpoints in Solid Malignancies With a Focus on Metastatic Non-Small Cell Lung Cancer 
Relative to best supportive care alone, cytotoxic chemotherapy has an established role in prolonging overall survival (OS) in patients with or without previous treatment for metastatic non-small cell lung cancer (NSCLC). OS has been the principal endpoint influencing regulatory decisions regarding targeted therapies for metastatic NSCLC, including the vascular endothelial growth factor monoclonal antibody bevacizumab in the frontline setting and the epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib in patients after prior treatment. Progression-free survival (PFS), another common endpoint in oncology clinical trials, has been discussed as a potential surrogate for OS in metastatic NSCLC. A number of phase III clinical trials of investigational targeted agents for treatment of metastatic NSCLC are ongoing, with OS designated as the primary endpoint in some cases and PFS in others. Both endpoints have been developed largely to evaluate outcomes in unselected populations in which a fraction of patients are anticipated to derive significant benefit. New approaches are being considered for the evaluation of targeted agents. Recent high profile trials have been designed to assess PFS using a randomized discontinuation design and disease control rate after 8 weeks of treatment. With a series of recent advances towards increasingly personalized biomarker-directed anticancer therapies, the appropriateness of the traditional regulatory approach has been questioned.
PMCID: PMC3737740  PMID: 22795702
lung cancer; progression-free survival; overall survival; surrogate endpoint; disease control rate; clinical research
15.  Elevated neutrophil gelatinase-associated lipocalin contributes to erlotinib resistance in non-small cell lung cancer 
Purpose: The EGFR tyrosine kinase inhibitors (TKIs) demonstrate efficacy in NSCLC patients whose tumors harbor activating EGFR mutations. However, patients who initially respond to EGFR TKI treatment invariably develop resistance to the drugs. Known mechanisms account for approximately 70% of native and acquired EGFR TKI resistance. In the current study we investigated a novel mechanism of NSCLC resistance to erlotinib. Experimental Design: The mechanisms of acquired erlotinib resistance were evaluated by microarray analysis in thirteen NSCLC cell lines and in vivo in mice. Correlations between plasma neutrophil gelatinase associated lipocalin (NGAL) levels, erlotinib response and the EGFR mutational status were assessed in advanced stage NSCLC patients treated with erlotinib. Results: In 5 of 13 NSCLC cell lines NGAL was significantly upregulated. NGAL knockdown in erlotinib-resistant cells increased erlotinib sensitivity in vitro and in vivo. NGAL overexpression in erlotinib-sensitive cells augmented apoptosis resistance. This was mediated by NGAL-dependent modulation of the pro-apoptotic protein Bim levels. Evaluation of the plasma NGAL levels in NSCLC patients that received erlotinib revealed that patients with lower baseline NGAL demonstrated a better erlotinib response. Compared to patients with wild type EGFR, patients with activating EGFR mutations had lower plasma NGAL at baseline and weeks 4 and 8. Conclusions: Our studies uncover a novel mechanism of NGAL-mediated modulation of Bim levels in NSCLC that might contribute to TKI resistance in lung cancer patients. These findings provide the rationale for the further investigations of the utility of NGAL as a potential therapeutic target or diagnostic biomarker.
PMCID: PMC3745436  PMID: 23977408
Lung cancer; effectors of apoptosis; survival factors; EGFR; erlotinib resistance
16.  Phase II Study of Single-Agent Navitoclax (ABT-263) and Biomarker Correlates in Patients with Relapsed Small Cell Lung Cancer 
Bcl-2 is a critical regulator of apoptosis that is overexpressed in the majority of small cell lung cancers (SCLC). Nativoclax (ABT-263) is a potent and selective inhibitor of Bcl-2 and Bcl-xL. The primary objectives of this phase IIa study included safety at the recommended phase II dose and preliminary, exploratory efficacy assessment in patients with recurrent and progressive SCLC after at least one prior therapy.
Experimental Design
Thirty-nine patients received navitoclax 325 mg daily, following an initial lead-in of 150 mg daily for 7 days. Study endpoints included safety and toxicity assessment, response rate, progression-free and overall survival (PFS and OS), as well as exploratory pharmacodynamic correlates.
The most common toxicity associated with navitoclax was thrombocytopenia, which reached grade III–IV in 41% of patients. Partial response was observed in one (2.6%) patient and stable disease in 9 (23%) patients. Median PFS was 1.5 months and median OS was 3.2 months. A strong association between plasma pro–gastrin-releasing peptide (pro-GRP) level and tumor Bcl-2 copy number (R = 0.93) was confirmed. Exploratory analyses revealed baseline levels of cytokeratin 19 fragment antigen 21-1, neuron-specific enolase, pro-GRP, and circulating tumor cell number as correlates of clinical benefit.
Bcl-2 targeting by navitoclax shows limited single-agent activity against advanced and recurrent SCLC. Correlative analyses suggest several putative biomarkers of clinical benefit. Preclinical models support that navitoclax may enhance sensitivity of SCLC and other solid tumors to standard cytotoxics. Future studies will focus on combination therapies.
PMCID: PMC3715059  PMID: 22496272
17.  Expanding options for EGFR targeting in lung cancer 
PMCID: PMC4367554  PMID: 25806196
18.  Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer 
Steroids  2011;76(9):910-920.
Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC.
PMCID: PMC3129425  PMID: 21600232
Progesterone; Estrogen; Steroid hormone receptor; Non-small cell lung cancer; VEGF; Progenitor cells; Cancer stem cells; Angiogenesis
19.  Phase I Dose-escalation Study of the Pan-HER Inhibitor, PF299804, in Patients with Advanced Malignant Solid Tumors 
PF299804 is a potent, orally available, irreversible inhibitor of tyrosine kinase human epidermal growth factor receptors (HER) 1 (EGFR), HER2, and HER4. This first-in-human study investigated the safety, tolerability, pharmacokinetics, and pharmacodynamics of PF299804 in patients with advanced solid malignancies.
Experimental Design
PF299804 was administered once daily continuously (schedule A), and intermittently (schedule B). Dose escalation proceeded until intolerable toxicities occurred. Skin biopsies were taken pre-dose and after 14 days of treatment, to establish a pharmacokinetic/pharmacodynamic relationship. Tumor response was measured once every 2 cycles. Efficacy was correlated with tumor genotypes in non-small cell lung cancer (NSCLC) patients.
121 patients were included (111 in schedule A, 10 in schedule B). The maximum tolerated dose (MTD) was 45 mg/day. Dose-limiting toxicities included stomatitis and skin toxicities. Most adverse events were mild and comprised skin toxicities, fatigue, and gastrointestinal side-effects including diarrhea, nausea, and vomiting. Pharmacokinetic analyses revealed dose-dependent increases in PF299804 exposure associated with target inhibition in skin biopsy samples. Fifty-seven patients with non-small cell lung cancer (NSCLC) were treated in this study. Four patients, all previously treated with gefitinib or erlotinib (2 with exon 19 deletions, 1 with exon 20 insertion, 1 mutational status unknown), had a partial response to PF299804.
The MTD of PF299804 is 45 mg/day. Both continuous and intermittent treatment schedules were well tolerated, and encouraging signs of antitumor activity were observed in gefitinib/erlotinib treated NSCLC patients.
PMCID: PMC3048920  PMID: 21220471
Phase I clinical trial; Non-small cell lung cancer; epidermal growth factor receptor; mutation; kinase inhibitor
20.  Identification of common predictive markers of in vitro response to the MEK inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines 
Molecular cancer therapeutics  2010;9(7):1985-1994.
Selumetinib (AZD6244; ARRY-142886) is a tight-binding, uncompetitive inhibitor of MEK1/2 currently in clinical development. We evaluated the effects of selumetinib in 31 human breast cancer cell lines and 43 human non-small cell lung cancer (NSCLC) cell lines to identify characteristics correlating with in vitro sensitivity to MEK inhibition. IC50 less than 1µM (considered sensitive) was seen in 5 of 31 breast cancer cell lines and 15 of 43 NSCLC cell lines, with a correlation between sensitivity and raf mutations in breast cancer cell lines (p= 0.022) and ras mutations in NSCLC cell lines (p= 0.045). Evaluation of 27 of the NSCLC cell lines with Western blots demonstrated no clear association between MEK and PI3K pathway activation and sensitivity to MEK inhibition. Baseline gene expression profiles were generated for each cell line using Agilent gene expression arrays to identify additional predictive markers. Genes associated with differential sensitivity to selumetinib were seen in both histologies, including a small number of genes in which differential expression was common to both histologies. In total, these results suggest that clinical trials of selumetinib in breast cancer and NSCLC might select patients whose tumors harbor raf and ras mutations respectively.
PMCID: PMC2939826  PMID: 20587667
AZD6244; MEK; Breast cancer; Lung Cancer
21.  High prevalence of lung cancer in a surgical cohort of lung cancer patients a decade after smoking cessation 
This study was designed to assess the prevalence of smoking at time of lung cancer diagnosis in a surgical patient cohort referred for cardiothoracic surgery.
Retrospective study of lung cancer patients (n = 626) referred to three cardiothoracic surgeons at a tertiary care medical center in Southern California from January 2006 to December 2008. Relationships among years of smoking cessation, smoking status, and tumor histology were analyzed with Chi-square tests.
Seventy-seven percent (482) had a smoking history while 11.3% (71) were current smokers. The length of smoking cessation to cancer diagnosis was <1 year for 56 (13.6%), 1-10 years for 110 (26.8%), 11-20 years for 87 (21.2%), 21-30 years for 66 (16.1%), 31-40 years for 44 (10.7%), 41-50 years for 40 (9.7%) and 51-60 years for 8 (1.9%). The mean cessation was 18.1 ± 15.7 years (n = 411 former smokers). Fifty-nine percent had stage 1 disease and 68.0% had adenocarcinoma. Squamous cell carcinoma was more prevalent in smokers (15.6% vs. 8.3%, p = 0.028); adenocarcinoma was more prevalent in never-smokers (79.9% versus 64.3%, p = 0.0004). The prevalence of adenocarcinoma varied inversely with pack year (p < 0.0001) and directly with years of smoking cessation (p = 0.0005).
In a surgical lung cancer cohort, the majority of patients were smoking abstinent greater than one decade before the diagnosis of lung cancer.
PMCID: PMC3056729  PMID: 21352550

Results 1-21 (21)