PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Cytoplasmic Male Sterility Contributes to Hybrid Incompatibility Between Subspecies of Arabidopsis lyrata 
G3: Genes|Genomes|Genetics  2013;3(10):1727-1740.
In crosses between evolutionarily diverged populations, genomic incompatibilities may result in sterile hybrids, indicating evolution of reproductive isolation. In several plant families, crosses within a population can also lead to male sterile progeny because of conflict between the maternally and biparentally inherited genomes. We examined hybrid fertility between subspecies of the perennial outcrossing self-incompatible Lyrate rockcress (Arabidopsis lyrata) in large reciprocal F2 progenies and three generations of backcrosses. In one of the reciprocal F2 progenies, almost one-fourth of the plants were male-sterile. Correspondingly, almost one-half of the plants in one of the four reciprocal backcross progenies expressed male sterility. In an additional four independent F2 and backcross families, three segregated male sterility. The observed asymmetrical hybrid incompatibility is attributable to male sterility factors in one cytoplasm, for which the other population lacks effective fertility restorers. Genotyping of 96 molecular markers and quantitative trait locus mapping revealed that only 60% of the plants having the male sterile cytoplasm and lacking the corresponding restorers were phenotypically male-sterile. Genotyping data showed that there is only one restorer locus, which mapped to a 600-kb interval at the top of chromosome 2 in a region containing a cluster of pentatricopeptide repeat genes. Male fertility showed no trade-off with seed production. We discuss the role of cytoplasm and genomic conflict in incipient speciation and conclude that cytoplasmic male sterility–lowering hybrid fitness is a transient effect with limited potential to form permanent reproductive barriers between diverged populations of hermaphrodite self-incompatible species.
doi:10.1534/g3.113.007815
PMCID: PMC3789797  PMID: 23935000
Arabidopsis; cytoplasmic male sterility; hybrid incompatibility; QTL mapping; speciation
2.  Variation in restorer genes and primary sexual investment in gynodioecious Plantago coronopus: the trade-off between male and female function. 
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.
doi:10.1098/rspb.2003.2462
PMCID: PMC1691454  PMID: 14561308
3.  Comparative mapping in the Fagaceae and beyond with EST-SSRs 
BMC Plant Biology  2012;12:153.
Background
Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species.
Results
We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype.
Conclusions
This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.
doi:10.1186/1471-2229-12-153
PMCID: PMC3493355  PMID: 22931513
4.  A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study 
BMC Genomics  2010;11:570.
Background
Expressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut).
Results
A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher.
Conclusion
We have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance.
doi:10.1186/1471-2164-11-570
PMCID: PMC3091719  PMID: 20950475

Results 1-4 (4)