Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mutations in TJP2 cause progressive cholestatic liver disease 
Nature genetics  2014;46(4):326-328.
The elucidation of genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Protein-truncating mutations in the tight junction protein 2 gene (TJP2) are shown to cause failure of protein localisation, with disruption of tight-junction structure leading to severe cholestatic liver disease. This contrasts with the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.
PMCID: PMC4061468  PMID: 24614073
2.  Diagnosis in bile acid-CoA: Amino acid N-acyltransferase deficiency 
Cholate-CoA ligase (CCL) and bile acid-CoA: amino acid N-acyltransferase (BAAT) sequentially mediate bile-acid amidation. Defects can cause intrahepatic cholestasis. Distinction has required gene sequencing. We assessed potential clinical utility of immunostaining of liver for CCL and BAAT. Using commercially available antibodies against BAAT and CCL, we immunostained liver from an infant with jaundice, deficiency of amidated bile acids, and transcription-terminating mutation in BAAT. CCL was normally expressed. BAAT expression was not detected. Immunostaining may facilitate diagnosis in bile-acid amidation defects.
PMCID: PMC3391772  PMID: 22783059
Amidation; Bile acid-CoA; Amino acid N-acyltransferase; Cholate-CoA ligase; Cholestasis; Conjugation; Electrospray ionisation-mass spectroscopy; Immunohistochemistry; Liver; Neonatal hepatitis; SLC27A5; Transmission electron microscopy
Gastroenterology  2013;144(5):945-e15.
The final step in bile acid synthesis involves conjugation with glycine and taurine, which promotes a high intraluminal micellar concentration to facilitate lipid absorption. We investigated the clinical, biochemical, molecular, and morphologic features of a genetic defect in bile acid conjugation in 10 pediatric patients with fat-soluble vitamin deficiency, some with growth failure or transient neonatal cholestatic hepatitis.
We identified the genetic defect that causes this disorder using mass spectrometry analysis of urine, bile, and serum samples, and sequence analysis of the genes encoding bile acid-CoA:amino acid N-acyltransferase (BAAT) and bile acid-Co A ligase (SLC27A5).
Levels of urinary bile acids were increased (432±248 μmol/L) and predominantly excreted in unconjugated forms (79.4%±3.9%), and as sulfates and glucuronides. Glycine or taurine conjugates were absent in the urine, bile and serum. Unconjugated bile acids accounted for 95.7%±5.8% of the bile acids in duodenal bile, with cholic acid accounting for 82.4%±5.5% of total. Duodenal bile acid concentrations were 12.1±5.9 mmol/L—a concentration too low for efficient lipid absorption. The biochemical profile was consistent with defective bile acid amidation. Molecular analysis of BAAT confirmed 4 different homozygous mutations in 8 patients tested.
Based on a study of 10 pediatric patients, genetic defects that disrupt bile acid amidation cause fat-soluble vitamin deficiency and growth failure, indicating the importance of bile acid conjugation in lipid absorption. Some patients developed liver disease with features of a cholangiopathy. These findings indicate that patients with idiopathic neonatal cholestasis or later onset of unexplained fat-soluble vitamin deficiency should be screened for defects in bile acid conjugation.
PMCID: PMC4175397  PMID: 23415802
Chronic Liver Disease; Hepatic; Inherited; Nutrient; Bile acid conjugation; Bile acid-CoA amino acid N-acyltransferase; BAAT; Glycine; Taurine; Mass Spectrometry; Cholestasis; Fat-soluble vitamin deficiency
4.  CCBE1 Mutation in Two Siblings, One Manifesting Lymphedema-Cholestasis Syndrome, and the Other, Fetal Hydrops 
PLoS ONE  2013;8(9):e75770.
Lymphedema-cholestasis syndrome (LCS; Aagenaes syndrome) is a rare autosomal recessive disorder, characterized by 1) neonatal intrahepatic cholestasis, often lessening and becoming intermittent with age, and 2) severe chronic lymphedema, mainly lower limb. LCS was originally described in a Norwegian kindred in which a locus, LCS1, was mapped to a 6.6cM region on chromosome 15. Mutations in CCBE1 on chromosome 18 have been reported in some cases of lymphatic dysplasia, but not in LCS.
Consanguineous parents of Mexican ancestry had a child with LCS who did not exhibit extended homozygosity in the LCS1 region. A subsequent pregnancy was electively terminated due to fetal hydrops. We performed whole-genome single nucleotide polymorphism genotyping to identify regions of homozygosity in these siblings, and sequenced promising candidate genes.
Both siblings harbored a homozygous mutation in CCBE1, c.398 T>C, predicted to result in the missense change p.L133P. Regions containing known ‘cholestasis genes’ did not demonstrate homozygosity in the LCS patient.
Mutations in CCBE1 may yield a phenotype not only of lymphatic dysplasia, but also of LCS or fetal hydrops; however, the possibility that the sibling with LCS also carries a homozygous mutation in an unidentified gene influencing cholestasis cannot be excluded.
PMCID: PMC3784396  PMID: 24086631
5.  Differences in presentation and progression between severe FIC1 and BSEP deficiencies 
Journal of hepatology  2010;53(1):170-178.
Background & Aims
Progressive familial intrahepatic cholestasis (PFIC) with normal serum levels of gamma-glutamyltranspeptidase can result from mutations in ATP8B1 (encoding familial intrahepatic cholestasis 1 [FIC1]) or ABCB11 (encoding bile salt export pump [BSEP]). We evaluated clinical and laboratory features of disease in patients diagnosed with PFIC, who carried mutations in ATP8B1 (FIC1 deficiency) or ABCB11 (BSEP deficiency). Our goal was to identify features that distinguish presentation and course of these 2 disorders, thus facilitating diagnosis and elucidating the differing consequences of ATP8B1 and ABCB11 mutations.
A retrospective multi-center study was conducted, using questionnaires and chart review. Available clinical and biochemical data from 145 PFIC patients with mutations in either ATP8B1 (61 “FIC1 patients”) or ABCB11 (84 “BSEP patients”) were evaluated.
At presentation, serum aminotransferase and bile salt levels were higher in BSEP patients; serum alkaline phosphatase values were higher, and serum albumin values were lower, in FIC1 patients. Elevated white blood cell counts, and giant or multinucleate cells at liver biopsy, were more common in BSEP patients. BSEP patients more often had gallstones and portal hypertension. Diarrhea, pancreatic disease, rickets, pneumonia, abnormal sweat tests, hearing impairment, and poor growth were more common in FIC1 patients. Among BSEP patients, the course of disease was less rapidly progressive in patients bearing the D482G mutation.
Severe forms of FIC1 and BSEP deficiency differed. BSEP patients manifested more severe hepatobiliary disease, while FIC1 patients showed greater evidence of extrahepatic disease.
PMCID: PMC3042805  PMID: 20447715
cholestasis; genetics; transport protein; pediatrics; P-type ATPase; ATP binding cassette protein; ATP8B1; FIC1; ABCB11; BSEP
6.  Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse 
PLoS ONE  2010;5(2):e8984.
Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency.
Methodology/Principal Findings
We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains.
Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease.
PMCID: PMC2813882  PMID: 20126555
7.  Bile composition in Alagille Syndrome and PFIC patients having Partial External Biliary Diversion 
BMC Gastroenterology  2008;8:47.
Partial External Biliary Diversion (PEBD) is a surgical intervention to treat children with Progressive Familial Intrahepatic Cholestasis (PFIC) and Alagille syndrome (AGS). PEBD can reduce disease progression, and examining the alterations in biliary lipid composition may be a prognostic factor for outcome.
Biliary lipid composition and the clinical course of AGS and PFIC patients were examined before and after PEBD.
Pre-PEBD bile from AGS patients had greater chenodeoxycholic/cholic acid (CDCA/CA), bile salt, cholesterol and phospholipid concentrations than PFIC patients. AGS patients, and PFIC patients with familial intrahepatic cholestasis 1 (FIC1) genotype, responded better to PEBD than PFIC patients with bile salt export protein (BSEP) genotype. After successful PEBD, AGS patients have higher biliary lipid concentrations than PFIC patients and PEBD also increases biliary phospholipid concentrations in FIC1 patients.
Both AGS and FIC1 patients can benefit from PEBD, and preserved biliary phospholipid concentrations may be associated with better outcomes post-PEBD.
PMCID: PMC2585081  PMID: 18937870

Results 1-7 (7)