PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing 
Biomatter  2013;3(4):e25633.
Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE™. The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE™, has the potential for use in chronic wound healing.
doi:10.4161/biom.25633
PMCID: PMC3866196  PMID: 23896569
collagen sponge; hyaluronic acid; cross-linking; histology; wound repair
2.  Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse 
Journal of Clinical Investigation  2001;108(8):1229-1235.
Production of prostaglandin E2 (PGE2) is enhanced during inflammation, and this lipid mediator can dramatically modulate immune responses. There are four receptors for PGE2 (EP1–EP4) with unique patterns of expression and different coupling to intracellular signaling pathways. To identify the EP receptors that regulate cellular immune responses, we used mouse lines in which the genes encoding each of the four EP receptors were disrupted by gene targeting. Using the mixed lymphocyte response (MLR) as a model cellular immune response, we confirmed that PGE2 has potent antiproliferative effects on wild-type responder cells. The absence of either the EP1 or EP3 receptors did not alter the inhibitory response to PGE2 in the MLR. In contrast, when responder cells lacked the EP2 receptor, PGE2 had little effect on proliferation. Modest resistance to PGE2 was also observed in EP4–/– responder cells. Reconstitution experiments suggest that EP2 receptors primarily inhibit the MLR through direct actions on T cells. Furthermore, PGE2 modulates macrophage function by activating the EP4 receptor and thereby inhibiting cytokine release. Thus, PGE2 regulates cellular immune responses through distinct EP receptors on different immune cell populations: EP2 receptors directly inhibit T cell proliferation while EP2 and EP4 receptors regulate antigen presenting cells functions.
PMCID: PMC209534  PMID: 11602631
3.  Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway 
Journal of Clinical Investigation  1999;104(12):1693-1701.
The renin-angiotensin system (RAS) is a key regulator of vascular tone and blood pressure. In addition, angiotensin II also has a number of cellular effects that may contribute to disease pathogenesis. Using Agtr1a–/– mice, which lack AT1A receptors for angiotensin II, we have identified a novel function of the RAS to modulate the immune system. We find that angiotensin II, acting through type 1 (AT1) receptors on immune cells, triggers the proliferation of splenic lymphocytes. These actions contribute to the vigor of cellular alloimmune responses. Within lymphoid organs, sufficient components of the RAS are present to activate AT1 receptors during an immune response, promoting cell growth. These actions require activation of calcineurin phosphatase. In an in vivo model of cardiac transplantation, the absence of AT1 signaling accentuates the immunosuppressive effects of the calcineurin inhibitor cyclosporine. We conclude that inhibition of AT1 receptor signaling should be useful as an anti-inflammatory and immunosuppressive therapy. Furthermore, the actions of the RAS to promote lymphocyte activation may contribute to inflammation that characterizes a number of diseases of the heart and the vascular system.
J. Clin. Invest. 104:1693–1701 (1999).
PMCID: PMC409880  PMID: 10606623

Results 1-3 (3)