Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy 
Frontiers in Genetics  2014;5:383.
NF-E2-related factor 2 (NRF2) is a transcription factor that controls the expression of a variety of antioxidant and detoxification genes. Accumulating evidence strongly suggests that NRF2 mediates cancer cell proliferation and drug resistance, as well. Single nucleotide polymorphism (SNP) -617C > A in the anti-oxidant response element-like loci of the human NRF2 gene play a pivotal role in the positive feedback loop of transcriptional activation of the NRF2 gene. Since the SNP (-617A) reportedly decreases the binding affinity to the transcription factors of NRF2/small multiple alignment format (MafK), the homozygous -617A/A allele may attenuate the positive feedback loop of transcriptional activation of the NRF2 gene and reduce the NRF2 protein level. As the consequence, cancer cells are considered to become more sensitive to therapy and less aggressive than cancer cells harboring the -617C (WT) allele. Indeed, Japanese lung cancer patients carrying SNP homozygous alleles (c. -617A/A) exhibited remarkable survival over 1,700 days after surgical operation (log-rank p = 0.021). The genetic polymorphism in the human NRF2 gene is considered as one of prognosis markers for cancer therapy.
PMCID: PMC4219421  PMID: 25408701
drug resistance; anti-oxidant response element (ARE); ABCG2; NRF2; single nucleotide polymorphism (SNP)
2.  Single-nucleotide polymorphism (c.309T>G) in the MDM2 gene and lung cancer risk 
Biomedical Reports  2014;2(5):719-724.
Murine double minute 2 (MDM2) is a negative regulator of p53. A single-nucleotide polymorphism (SNP) (rs2279744: c.309T>G) in the promoter region of the MDM2 gene has been shown to result in higher levels of MDM2 RNA and protein. Regarding the contribution of c.309T>G in the MDM2 gene to the lung cancer risk, previous studies are conflicting. In order to evaluate the association between c.309T>G and the lung cancer risk, a case-control study was performed. The MDM2 genotypes were determined in 762 lung cancer patients and in 700 cancer-free control subjects using the Smart Amplification Process. Statistical adjustment was performed for gender, age and pack-years of smoking. The distributions of c.309T>G (T/T, T/G, G/G) were 20.1, 49.7, 30.2% in the case group and 21.7, 47.9, 30.4% in the healthy-control group. There were no overall associations between the MDM2 genotypes and the risk of lung cancer [T/G genotype: Adjusted odds ratio (AOR), 1.30; 95% confidence interval (CI), 0.88–1.93; and G/G genotype: AOR, 1.18; 95% CI, 0.78–1.80]. The subgroup analysis of gender, histology, smoking status and epidermal growth factor receptor mutation status also indicated that there was no association with lung cancer. Additionally, the genotypes did not have an effect on the age at the time of diagnosis of lung cancer (P=0.25). In conclusion, the G allele frequency in the lung cancer cases was 0.551, which was similar to other studies. The results of the present study suggest that the c.309T>G is not significantly associated with lung cancer.
PMCID: PMC4106610  PMID: 25054017
lung cancer; murine double minute 2; p53; single-nucleotide polymorphism 309; smart amplification process; smoking history; cancer susceptibility
3.  Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk 
Pharmaceuticals  2013;6(11):1347-1360.
In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.
PMCID: PMC3854015  PMID: 24287461
ABC transporter; ABCG2; gout; hyperuricemia; kidney; SNP; uric acid
4.  SNP (–617C>A) in ARE-Like Loci of the NRF2 Gene: A New Biomarker for Prognosis of Lung Adenocarcinoma in Japanese Non-Smoking Women 
PLoS ONE  2013;8(9):e73794.
The transcription factor NRF2 plays a pivotal role in protecting normal cells from external toxic challenges and oxidative stress, whereas it can also endow cancer cells resistance to anticancer drugs. At present little information is available about the genetic polymorphisms of the NRF2 gene and their clinical relevance. We aimed to investigate the single nucleotide polymorphisms in the NRF2 gene as a prognostic biomarker in lung cancer.
Experimental Design
We prepared genomic DNA samples from 387 Japanese patients with primary lung cancer and detected SNP (c.–617C>A; rs6721961) in the ARE-like loci of the human NRF2 gene by the rapid genetic testing method we developed in this study. We then analyzed the association between the SNP in the NRF2 gene and patients’ overall survival.
Patients harboring wild-type (WT) homozygous (c.–617C/C), SNP heterozygous (c.–617C/A), and SNP homozygous (c.–617A/A) alleles numbered 216 (55.8%), 147 (38.0%), and 24 (6.2%), respectively. Multivariate logistic regression models revealed that SNP homozygote (c.–617A/A) was significantly related to gender. Its frequency was four-fold higher in female patients than in males (10.8% female vs 2.7% male) and was associated with female non-smokers with adenocarcinoma. Interestingly, lung cancer patients carrying NRF2 SNP homozygous alleles (c.–617A/A) and the 309T (WT) allele in the MDM2 gene exhibited remarkable survival over 1,700 days after surgical operation (log-rank p = 0.021).
SNP homozygous (c.–617A/A) alleles in the NRF2 gene are associated with female non-smokers with adenocarcinoma and regarded as a prognostic biomarker for assessing overall survival of patients with lung adenocarcinoma.
PMCID: PMC3770684  PMID: 24040073
5.  Rapid Detection of SNP (c.309T>G) in the MDM2 Gene by the Duplex SmartAmp Method 
PLoS ONE  2013;8(4):e60151.
Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP) c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans.
In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named “Duplex SmartAmp,” which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms.
Results and Conclusions
By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.
PMCID: PMC3614994  PMID: 23565197
6.  Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion 
Frontiers in Genetics  2013;3:306.
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients’ response to nucleoside-based chemotherapy.
PMCID: PMC3539816  PMID: 23316210
apocrine gland; earwax; axillary osmidrosis; breast cancer; mastopathy; 5-fluorouracil; tamoxifen
7.  Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA–induced fluorescence 
Neuro-Oncology  2011;13(11):1234-1243.
In photodynamic diagnosis, 5-aminolevulinic acid (5-ALA) is widely used for the fluorescence-guided resection of malignant brain tumors, where 5-ALA is converted to protoporphyrin IX, which exhibits strong fluorescence. Little is known, however, about the detailed molecular mechanisms underlying 5-ALA–induced fluorescence. To resolve this issue, we analyzed transcriptome profiles for the genes encoding enzymes, transporters, and a transcription factor involved in the porphyrin-biosynthesis pathway. By quantitative real-time (qRT)-PCR, we measured the mRNA levels of those genes in a total of 20 tumor samples that had been surgically resected from brain tumor patients at the Department of Neurosurgery of Osaka Medical College from 2008 to 2009. We selected 10 tumor samples with no 5-ALA–induced fluorescence, among which 2 were glioblastomas and 8 were metastatic brain tumors. Another 10 tumor samples were selected with strong fluorescence, among which 7 were glioblastomas and 3 were metastatic brain tumors. The qRT-PCR analysis study of these latter 10 samples revealed predominantly high levels of the mRNA of the coproporphyrinogen oxidase (CPOX) gene. The high mRNA level of CPOX expression was significantly well correlated with the phenotype of strong 5-ALA–induced fluorescence (P = .0003). These findings were further confirmed by immunohistochemical studies with a CPOX-specific antibody. It is concluded that induction of CPOX gene expression is one of the key molecular mechanisms underlying the 5-ALA–induced fluorescence of malignant brain tumors. The induction mechanism for the CPOX gene in brain tumors remains to be elucidated.
PMCID: PMC3199158  PMID: 21824890
coproporphyrinogen oxidase; malignant glioma; metastatic brain tumor; photodynamic diagnosis
8.  One-Step Detection of the 2009 Pandemic Influenza A(H1N1) Virus by the RT-SmartAmp Assay and Its Clinical Validation 
PLoS ONE  2012;7(1):e30236.
In 2009, a pandemic (pdm) influenza A(H1N1) virus infection quickly circulated globally resulting in about 18,000 deaths around the world. In Japan, infected patients accounted for 16% of the total population. The possibility of human-to-human transmission of highly pathogenic novel influenza viruses is becoming a fear for human health and society.
To address the clinical need for rapid diagnosis, we have developed a new method, the “RT-SmartAmp assay”, to rapidly detect the 2009 pandemic influenza A(H1N1) virus from patient swab samples. The RT-SmartAmp assay comprises both reverse transcriptase (RT) and isothermal DNA amplification reactions in one step, where RNA extraction and PCR reaction are not required. We used an exciton-controlled hybridization-sensitive fluorescent primer to specifically detect the HA segment of the 2009 pdm influenza A(H1N1) virus within 40 minutes without cross-reacting with the seasonal A(H1N1), A(H3N2), or B-type (Victoria) viruses.
Results and Conclusions
We evaluated the RT-SmartAmp method in clinical research carried out in Japan during a pandemic period of October 2009 to January 2010. A total of 255 swab samples were collected from outpatients with influenza-like illness at three hospitals and eleven clinics located in the Tokyo and Chiba areas in Japan. The 2009 pdm influenza A(H1N1) virus was detected by the RT-SmartAmp assay, and the detection results were subsequently compared with data of current influenza diagnostic tests (lateral flow immuno-chromatographic tests) and viral genome sequence analysis. In conclusion, by the RT-SmartAmp assay we could detect the 2009 pdm influenza A(H1N1) virus in patients' swab samples even in early stages after the initial onset of influenza symptoms. Thus, the RT-SmartAmp assay is considered to provide a simple and practical tool to rapidly detect the 2009 pdm influenza A(H1N1) virus.
PMCID: PMC3266250  PMID: 22295077
9.  Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA)-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors 
Pharmaceutics  2011;3(3):615-635.
Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX) exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA) or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP)-binding cassette (ABC) transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR) analysis to design potent ABCG2-inhibitors.
PMCID: PMC3857086  PMID: 24310600
brain tumor; glioma; photodynamic diagnosis; 5-aminolevulinic acid (ALA); ABC transporter; ABCG2; protein kinase inhibitor
10.  Mutation Analysis of 2009 Pandemic Influenza A(H1N1) Viruses Collected in Japan during the Peak Phase of the Pandemic 
PLoS ONE  2011;6(4):e18956.
Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country. It is of great importance to profile and understand the situation regarding viral mutations and their circulation in Japan to accumulate a knowledge base and to prepare clinical response platforms before a second pandemic (pdm) wave emerges.
A total of 253 swab samples were collected from patients with influenza-like illness in the Osaka, Tokyo, and Chiba areas both in May 2009 and between October 2009 and January 2010. We analyzed partial sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of the 2009 pdm influenza virus in the collected clinical samples. By phylogenetic analysis, we identified major variants of the 2009 pdm influenza virus and critical mutations associated with severe cases, including drug-resistance mutations.
Results and Conclusions
Our sequence analysis has revealed that both HA-S220T and NA-N248D are major non-synonymous mutations that clearly discriminate the 2009 pdm influenza viruses identified in the very early phase (May 2009) from those found in the peak phase (October 2009 to January 2010) in Japan. By phylogenetic analysis, we found 14 micro-clades within the viruses collected during the peak phase. Among them, 12 were new micro-clades, while two were previously reported. Oseltamivir resistance-related mutations, i.e., NA-H275Y and NA-N295S, were also detected in sporadic cases in Osaka and Tokyo.
PMCID: PMC3084724  PMID: 21572517
11.  Technical Pitfalls and Improvements for High-speed Screening and QSAR Analysis to Predict Inhibitors of the Human Bile Salt Export Pump (ABCB11/BSEP) 
The AAPS Journal  2009;11(3):581-589.
Drug-induced hepatotoxicity is one of the major problems encountered in drug discovery and development. Selection of a candidate compound for pre-clinical studies in the drug discovery process is a critical step that can determine the speed and expenditure of clinical development. Because inhibition of human adenosine triphosphate-binding cassette transporter ABCB11 (SPGP/bile salt export pump) has severe consequences, which include intrahepatic cholestasis and hepatotoxicity, resulting from exposure to toxic xenobiotics or drug interactions, in vitro screening methods are necessary for quantifying and characterizing the inhibition of ABCB11. In line with such initiatives, we developed methods for in vitro high-speed screening and quantitative structure-activity relationship (QSAR) analysis to investigate the interaction of ABCB11 with a variety of compounds. We identified one set of chemical fragmentation codes closely linked with inhibition of ABCB11. Furthermore, the high-speed screening method enables us to analyze the kinetics of ABCB11-inhibition by test compounds and to distinguish competitive and non-competitive inhibitors. Troglitazone and novobiocin were found to be competitive inhibitors to taurocholate, whereas porphyrins were non-competitive inhibitors. Kinetics-based classification of inhibitors is considered important to improve the accuracy of our QSAR analysis. The present mini-review addresses technical pitfalls and improvements for high-speed screening and QSAR analysis in the ABCB11 inhibition study.
PMCID: PMC2758130  PMID: 19688600
ABCB11; bile salt; inhibition; intrahepatic cholestasis; QSAR analysis
12.  Key Role of Human ABC Transporter ABCG2 in Photodynamic Therapy and Photodynamic Diagnosis 
Accumulating evidence indicates that ATP-binding cassette (ABC) transporter ABCG2 plays a key role in regulating the cellular accumulation of porphyrin derivatives in cancer cells and thereby affects the efficacy of photodynamic therapy and photodynamic diagnosis. The activity of porphyrin efflux can be affected by genetic polymorphisms in the ABCG2 gene. On the other hand, Nrf2, an NF-E2-related transcription factor, has been shown to be involved in oxidative stress-mediated induction of the ABCG2 gene. Since patients have demonstrated individual differences in their response to photodynamic therapy, transcriptional activation and/or genetic polymorphisms of the ABCG2 gene in cancer cells may affect patients' responses to photodynamic therapy. Protein kinase inhibitors, including imatinib mesylate and gefitinib, are suggested to potentially enhance the efficacy of photodynamic therapy by blocking ABCG2-mediated porphyrin efflux from cancer cells. This review article provides an overview on the role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis.
PMCID: PMC3003952  PMID: 21188243
13.  Major SNP (Q141K) variant of Human ABC Transporter ABCG2 Undergoes Lysosomal and Proteasomal Degradations 
Pharmaceutical research  2008;26(2):469-479.
Single nucleotide polymorphisms (SNPs) of the ATP-binding cassette (ABC) transporter ABCG2 gene have been suggested to be a significant factor in patients’ responses to medication and/or the risk of diseases. We aimed to evaluate the impact of the major non-synonymous SNP Q141K on lysosomal and proteasomal degradations.
ABCG2 WT and the Q141K variant were expressed in Flp-In-293 cells by using the Flp recombinase system. Their expression levels and cellular localization was measured by immunoblotting and immunofluorescence microscopy, respectively.
The protein level of the Q141K variant expressed in Flp-In-293 cells was about half that of ABCG2 WT, while their mRNA levels were equal. The protein expression level of the Q141K variant increased about two-fold when Flp-In-293 cells were treated with MG132. In contrast, the protein level of ABCG2 WT was little affected by the same treatment. After treatment with bafilomycin A1, the protein levels of ABCG2 WT and Q141K increased 5- and 2-fold in Flp-In-293 cells, respectively.
The results strongly suggest that the major non-synonymous SNP Q141K affects the stability of the ABCG2 protein in the endoplasmic reticulum and enhances its susceptibility to ubiquitin-mediated proteasomal degradation.
PMCID: PMC2628956  PMID: 18958403
ABCG2; SNP; endoplasmic reticulum associated degradation (ERAD); ubiquitin; proteasome
14.  The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure 
Journal of Clinical Investigation  2001;107(3):325-331.
The lipid mediator prostaglandin E2 (PGE2) has diverse biological activity in a variety of tissues. Four different receptor subtypes (EP1–4) mediate these wide-ranging effects. The EP-receptor subtypes differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To identify the physiological roles for one of these receptors, the EP1 receptor, we generated EP1-deficient (EP1–/–) mice using homologous recombination in embryonic stem cells derived from the DBA/1lacJ strain of mice. The EP1–/– mice are healthy and fertile, without any overt physical defects. However, their pain-sensitivity responses, tested in two acute prostaglandin-dependent models, were reduced by approximately 50%. This reduction in the perception of pain was virtually identical to that achieved through pharmacological inhibition of prostaglandin synthesis in wild-type mice using a cyclooxygenase inhibitor. In addition, systolic blood pressure is significantly reduced in EP1 receptor–deficient mice and accompanied by increased renin-angiotensin activity, especially in males, suggesting a role for this receptor in cardiovascular homeostasis. Thus, the EP1 receptor for PGE2 plays a direct role in mediating algesia and in regulation of blood pressure.
PMCID: PMC199184  PMID: 11160156
15.  A new aspect on glutathione-associated biological function of MRP/GS-X pump and its gene expression 
Cytotechnology  1998;27(1-3):81-93.
The biological function as well as gene expression of the MRP/GS-X pump is closely linked with cellular GSH metabolism. This article describes two important aspects, i.e., 1) a role of the MRP/GS-X pump in the modulation of cell cycle arrest induced by anticancer prostaglandins; 2) coordinated up-regulation of γ-glutamylcysteine synthetase γ-GCS) and MRP1 genes. The A and J series of prostaglandins (PGs) accumulate in the nuclei to suppress the proliferation of cancer cells. Δ7-Prostaglandin A1 (Δ7-PGA1) methyl ester, a synthetic anticancer PG, increased the mRNA level of the cyclin-dependent kinase inhibitor p21Sdi1/CIP1/WAF1 in human leukemia HL-60 cells. The induction of p21Sdi1/CIP1/WAF1 was associated with the accumulation of hypophosphorylated retinoblastoma protein (pRB) and the suppression of c-myc gene expression. Unlike HL-60 cells, cisplatin-resistant HL-60/R-CP cells were insensitive to Δ7-PGA1 methyl ester. While c-myc expression was transiently suppressed, neither G1 arrest nor hypophosphorylation of pRB was observed with the anticancer PG. Plasma membrane vesicles from HL-60/R-CP cells showed an enhanced level of GS-X pump activity toward the glutathione S-conjugate of Δ7-PGA1 methyl ester. GIF-0019, a potent inhibitor of the GS-X pump, dose-dependently enhanced the cellular sensitivity of HL-60/R-CP cells to Δ7-PGA1 methyl ester, resulting in G1 arrest. The GS-X pump is suggested to play a pivotal role in modulating the biological action of the anticancer PG. The expression of MRP1 and γ-GCS genes can be coordinately up-regulated by cisplatin, 1-[5-(4-amino-2-methyl)pyrimidyl]methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), and heavy metals in human cancer cells. For the up-regulation of these genes, both transcriptional and posttranscriptional regulations are considered to be involved.
PMCID: PMC3449568  PMID: 19002785
anticancer prostaglandin; cell cycle arrest; GS-Xpump; multidrug resistance-associated protein (MRP1); p21
16.  Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure 
Some genetic polymorphisms of human ABC transporter genes are reportedly related to the risk of certain diseases and patients’ responses to medication. Human ABCC11 functions as an ATP-dependent efflux pump for amphipathic anions. One non-synonymous SNP 538G>A (Gly180Arg) has been found to greatly affect the function and stability of de novo synthesized ABCC11 (Arg180) variant protein. The SNP variant lacking N-linked glycosylation is recognized as a misfolded protein in the endoplasmic reticulum (ER) and readily undergoes proteasomal degradation. This ER-associated degradation of ABCC11 protein underlies the molecular mechanism of affecting the function of apocrine glands. On the other hand, the wild type (Gly180) of ABCC11 is associated with wettype earwax, axillary osmidrosis, colostrum secretion from the mammary gland, and the potential susceptibility of breast cancer. Furthermore, the wild type of ABCC11 reportedly has ability to efflux cyclic nucleotides and nucleoside-based anticancer drugs. The SNP (538G>A) of the ABCC11 gene is suggested to be a clinical biomarker for prediction of chemotherapeutic efficacy. Major obstacle to the successful chemotherapy of human cancer is development of resistance, and nucleoside-based chemotherapy is often characterized by inter-individual variability. This review provides an overview about the discovery and the genetic polymorphisms in human ABCC11. Furthermore, we focus on the impact of ABCC11 538G>A on the apocrine phenotype, patients’ response to nucleoside-based chemotherapy, and the potential risk of breast cancer.
PMCID: PMC3319924  PMID: 21182469
Apocrine gland; tamoxifen; earwax; estrogen receptor; mastopathy; multidrug resistance; nucleoside; single nucleotide polymorphism (SNP).

Results 1-16 (16)