Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A trivalent recombinant Ad5 gag/pol/nef vaccine fails to protect rhesus macaques from infection or control virus replication after a limiting-dose heterologous SIV challenge 
Vaccine  2012;30(30):4465-4475.
It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8+ (2–7 pool-specific responses) and CD4+ (5–19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with naïve controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to naïve controls. Post-infection we observed an average of only two anamnestic CD8+ T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines.
PMCID: PMC3372643  PMID: 22569124
HIV vaccine; Adenovirus serotype 5; Simian Immunodeficiency Virus; CD8+ T cells; CD4+ T cells; Step trial
2.  The Development of Recombinant Subunit Envelope-Based Vaccines to Protect Against Dengue Virus Induced Disease 
Vaccine  2011;29(42):7267-7275.
Challenges associated with the interference observed between the dengue virus components within early tetravalent live-attenuated vaccines led many groups to explore the development of recombinant subunit based vaccines. Initial efforts in the field were hampered by low yields and/or improper folding, but the use of the Drosophila S2 cell expression system provided a mechanism to overcome these limitations. The truncated dengue envelope proteins (DEN-80E) for all four dengue virus types are expressed in the S2 system at high levels and have been shown to maintain native-like conformation. The DEN-80E proteins are potent immunogens when formulated with a variety of adjuvants, inducing high titer virus neutralizing antibody responses and demonstrating protection in both mouse and non-human primate models. Tetravalent vaccine formulations have shown no evidence of immune interference between the four DEN-80E antigens in preclinical models. Based on the promising preclinical data, the recombinant DEN-80E proteins have now advanced into clinical studies. An overview of the relevant preclinical data for these recombinant proteins is presented in this review.
PMCID: PMC3179979  PMID: 21777637
3.  Transcriptional profiling of vaccine‐induced immune responses in humans and non‐human primates 
Microbial biotechnology  2012;5(2):177-187.
There is an urgent need for pre‐clinical and clinical biomarkers predictive of vaccine immunogenicity, efficacy and safety to reduce the risks and costs associated with vaccine development. Results emerging from immunoprofiling studies in non‐human primates and humans demonstrate clearly that (i) type and duration of immune memory are largely determined by the magnitude and complexity of the innate immune signals and (ii) genetic signatures highly predictive of B‐cell and T‐cell responses can be identified for specific vaccines. For vaccines with similar composition, e.g. live attenuated viral vaccines, these signatures share common patterns. Signatures predictive of vaccine efficacy have been identified in a few experimental challenge studies. This review aims to give an overview of the current literature on immunoprofiling studies in humans and also presents some of our own data on profiling of licensed and experimental vaccines in non‐human primates.
PMCID: PMC3380551  PMID: 22103427
4.  Low-Dose Penile SIVmac251 Exposure of Rhesus Macaques Infected with Adenovirus Type 5 (Ad5) and Then Immunized with a Replication-Defective Ad5-Based SIV gag/pol/nef Vaccine Recapitulates the Results of the Phase IIb Step Trial of a Similar HIV-1 Vaccine 
Journal of Virology  2012;86(4):2239-2250.
The Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8+ T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial. However, the vaccine did not protect vaccinated animals from penile SIV challenge. At the lowest SIV exposure dose (103 50% tissue culture infective doses), 2 of 9 Ad5-seropositive animals immunized with the Ad5 SIV vaccine became infected compared to 0 of 34 animals infected in the other animal groups (naive animals, Ad5-seropositive animals immunized with the empty Ad5 vector, Ad5-seronegative animals immunized with the Ad5 SIV vaccine, and Ad5-seronegative animals immunized with the empty Ad5 vector). Penile exposure to more concentrated virus inocula produced similar rates of infection in all animal groups. Although setpoint viral loads were unaffected in Step vaccinees, the Ad5 SIV-immunized animals had significantly lower acute-phase plasma vRNA levels compared to unimmunized animals. Thus, the results of the nonhuman primate (NHP) study described here recapitulate the lack of protection against HIV acquisition seen in the Step Trial and suggest a greater risk of infection in the Ad5-seropositive animals immunized with the Ad5 SIV vaccine. Further studies are necessary to confirm the enhancement of virus acquisition and to discern associated mechanisms.
PMCID: PMC3302390  PMID: 22156519
5.  Robust, Vaccine-Induced CD8+ T Lymphocyte Response against an Out-of-Frame Epitope 
Rational vaccines designed to engender T cell responses require intimate knowledge of how epitopes are generated and presented. Recently, we vaccinated 8 Mamu-A*02+ rhesus macaques with every SIV protein except Envelope (Env). Surprisingly, one of the strongest T cell responses engendered was against the Env protein, the Mamu-A*02–restricted epitope, Env788–795RY8. In this paper, we show that translation from an alternate reading frame of both the Rev-encoding DNA plasmid and the rAd5 vector engendered Env788–795RY8-specific CD8+ T cells of greater magnitude than “normal” SIV infection. Our data demonstrate both that the pathway from vaccination to immune response is not well understood and that products of alternate reading frames may be rich and untapped sources of T cell epitopes.
PMCID: PMC2881682  PMID: 19949108
7.  Safety and Immunogenicity of the Merck Adenovirus Serotype 5 (MRKAd5) and MRKAd6 Human Immunodeficiency Virus Type 1 Trigene Vaccines Alone and in Combination in Healthy Adults▿  
Preexisting immunity to adenovirus serotype 5 (Ad5) diminishes immune responses to vaccines using Ad5 as a vector. Alternate Ad serotypes as vaccine vectors might overcome Ad5-specific neutralizing antibodies and enhance immune responses in populations with a high prevalence of Ad5 immunity. To test this hypothesis, healthy human immunodeficiency virus (HIV)-seronegative adults were enrolled in a blinded, randomized, dose-escalating, placebo-controlled study. In part A, subjects with baseline Ad6 titers of ≤18 received the Merck Ad6 (MRKAd6) HIV type 1 (HIV-1) trigene vaccine at weeks 0, 4, and 26. In part B, subjects stratified by Ad5 titers (≤200 or >200) and Ad6 titers (≤18 or >18) received the MRKAd5-plus-MRKAd6 (MRKAd5+6) HIV-1 trigene vaccine at weeks 0, 4, and 26. Immunogenicity was assessed by an enzyme-linked immunospot (ELISPOT) assay at week 30. No serious adverse events occurred. MRKAd6 trigene vaccine recipients responded more often to Nef than to Gag or Pol. In part A, ELISPOT response rates to ≥2 vaccine antigens were 14%, 63%, and 71% at 109, 1010, and 1011 viral genomes (vg)/dose, respectively. All responders had positive Nef-specific ELISPOT results. In part B, Nef-ELISPOT response rates at 1010 vg/dose of the MRKAd5+6 trigene vaccine were 50% in the low-Ad5/low-Ad6 stratum (n = 8), 78% in the low-Ad5/high-Ad6 stratum (n = 9), 75% in the high-Ad5/low-Ad6 stratum (n = 8), and 44% in the high-Ad5/high-Ad6 stratum (n = 9). The MRKAd6 and MRKAd5+6 trigene vaccines elicited dose-dependent responses predominantly to Nef and were generally well tolerated, indicating that Ad6 should be considered a candidate vector for future vaccines. Although small sample sizes limit the conclusions that can be drawn from this exploratory study, combining two Ad vectors may be a useful vaccine strategy for circumventing isolated immunity to a single Ad serotype.
PMCID: PMC2745015  PMID: 19605598
8.  Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors 
PLoS ONE  2010;5(2):e9094.
Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.
Principal Findings
Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC50 values as low as 5±3 nM and 0.13±0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR “class I” point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare “class II” or “class III” mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.
Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.
PMCID: PMC2817004  PMID: 20161710
9.  Vaccine-Induced Cellular Responses Control Simian Immunodeficiency Virus Replication after Heterologous Challenge▿ †  
Journal of Virology  2009;83(13):6508-6521.
All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env. Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.
PMCID: PMC2698536  PMID: 19403685
10.  Attenuation of Simian Immunodeficiency Virus SIVmac239 Infection by Prophylactic Immunization with DNA and Recombinant Adenoviral Vaccine Vectors Expressing Gag 
Journal of Virology  2005;79(24):15547-15555.
The prophylactic efficacy of DNA and replication-incompetent adenovirus serotype 5 (Ad5) vaccine vectors expressing simian immunodeficiency virus (SIV) Gag was examined in rhesus macaques using an SIVmac239 challenge. Cohorts of either Mamu-A*01(+) or Mamu-A*01(−) macaques were immunized with a DNA prime-Ad5 boost regimen; for comparison, a third cohort consisting of Mamu-A*01(+) monkeys was immunized using the Ad5 vector alone for both prime and boost. All animals, along with unvaccinated control cohorts of Mamu-A*01(+) and Mamu-A*01(−) macaques, were challenged intrarectally with SIVmac239. Viral loads were measured in both peripheral and lymphoid compartments. Only the DNA prime-Ad5-boosted Mamu-A*01(+) cohort exhibited a notable reduction in peak plasma viral load (sevenfold) as well as in early set-point viral burdens in both plasma and lymphoid tissues (10-fold) relative to those observed in the control monkeys sharing the same Mamu-A*01 allele. The degree of control in each animal correlated with the levels of Gag-specific immunity before virus challenge. However, virus control was short-lived, and indications of viral escape were evident as early as 6 months postinfection. The implications of these results in vaccine design and clinical testing are discussed.
PMCID: PMC1315991  PMID: 16306625
11.  Heterologous Human Immunodeficiency Virus Type 1 Priming-Boosting Immunization Strategies Involving Replication-Defective Adenovirus and Poxvirus Vaccine Vectors 
Journal of Virology  2004;78(20):11434-11438.
We compared the human immunodeficiency virus type 1 (HIV-1)-specific cellular immune responses elicited in nonhuman primates by HIV-1 gag-expressing replication-defective adenovirus serotype 5 (Ad5) or poxvirus vectors, used either alone or in combination with each other. The responses arising from a heterologous Ad5 priming-poxvirus boosting regimen were significantly greater than those elicited by homologous regimens with the individual vectors or by a heterologous poxvirus priming-Ad5 boosting regimen. The heterologous Ad5 priming-poxvirus boosting approach may have potential utility in humans as a means of inducing high levels of cellular immunity.
PMCID: PMC521810  PMID: 15452269
12.  Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene 
Journal of Virology  2003;77(11):6305-6313.
Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4+ and CD8+ T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.
PMCID: PMC154996  PMID: 12743287
13.  Transcriptional profiling of vaccine-induced immune responses in humans and non-human primates 
Microbial Biotechnology  2012;5(2):177-187.
There is an urgent need for pre-clinical and clinical biomarkers predictive of vaccine immunogenicity, efficacy and safety to reduce the risks and costs associated with vaccine development. Results emerging from immunoprofiling studies in non-human primates and humans demonstrate clearly that (i) type and duration of immune memory are largely determined by the magnitude and complexity of the innate immune signals and (ii) genetic signatures highly predictive of B-cell and T-cell responses can be identified for specific vaccines. For vaccines with similar composition, e.g. live attenuated viral vaccines, these signatures share common patterns. Signatures predictive of vaccine efficacy have been identified in a few experimental challenge studies. This review aims to give an overview of the current literature on immunoprofiling studies in humans and also presents some of our own data on profiling of licensed and experimental vaccines in non-human primates.
PMCID: PMC3380551  PMID: 22103427

Results 1-13 (13)