Search tips
Search criteria

Results 1-25 (44)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  SYK Is a Critical Regulator of FLT3 In Acute Myeloid Leukemia 
Cancer cell  2014;25(2):226-242.
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.
Although imatinib therapy has been paradigm shifting for treating patients with BCR-ABL-rearranged chronic myelogenous leukemia (CML), the application of targeted kinase inhibitors to treating AML has been a more complex undertaking. In this study, we identified an oncogenic partnership between the most commonly mutated kinase in AML, FLT3, and the cytoplasmic kinase SYK. SYK transactivates FLT3 by a direct physical interaction, is critical for the development of FLT3-ITD-induced myeloid neoplasia, and is more highly activated in primary human FLT3-ITD-positive AML. These studies also raise the possibility of SYK activation as a mechanism of resistance to FLT3 inhibitors, suggest FLT3 mutant AML as a subtype for SYK inhibitor testing, and nominate the clinical testing of SYK and FLT3 inhibitor combinations.
PMCID: PMC4106711  PMID: 24525236
SYK; FLT3-ITD; AML; MYC; MPD; tyrosine kinase
2.  Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia 
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.
PMCID: PMC3904599  PMID: 24401270
3.  Loss of Oncogenic Notch1 with Resistance to a PI3K Inhibitor in T Cell Leukaemia 
Nature  2014;513(7519):512-516.
Mutations that deregulate Notch1 and Ras/PI3 kinase/Akt signalling are prevalent in T lineage acute lymphoblastic leukaemia (T-ALL), and often coexist. The PI3 kinase inhibitor GDC-0941 was active against primary T-ALLs from wild-type and KrasG12D mice and addition of the MEK inhibitor PD0325901 increased efficacy. Mice invariably relapsed after treatment with drug resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, down-regulated many Notch1 target genes, and exhibited cross-resistance to γ secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones up-regulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could facilitate drug resistance in T-ALL.
PMCID: PMC4213126  PMID: 25043004
4.  A Notch1-neuregulin1 autocrine signaling loop contributes to melanoma growth 
Oncogene  2012;31(43):4609-4618.
The Notch pathway is an evolutionary conserved signaling cascade that has an essential role in melanoblast and melanocyte stem cell homeostasis. Notch signaling is emerging as a key player in melanoma, the most deadly form of skin cancer. In melanoma, Notch1 is inappropriately reactivated and contributes to melanoma tumorigenicity. Here, we propose a novel mechanism by which Notch1 promotes the disease. We found that Notch1 directly regulates the transcription of neuregulin1 (NRG1) by binding to its promoter region. NRG1 is the ligand for ERBB3 and 4, members of the Epidermal Growth Factor family of receptors that are involved in the genesis and progression of a number of cancers. Notch1 and NRG1 expression are associated in melanoma and inhibition of NRG1 signaling leads to melanoma cell growth inhibition and tumor growth delay. Mechanistically, these effects are associated with the inhibition of the PI3Kinase/Akt signaling pathway and with the accumulation of p27Kip1. On the other end, addition of recombinant NRG1 can partially restore melanoma cell growth that is inhibited by Notch1 ablation. Taken together, our findings underline a new, previously undescribed autocrine signaling loop between Notch1 and NRG1 that controls melanoma growth and provide experimental evidence that the targeting of Notch and ERBB signaling may represent a novel potential therapeutic approach in melanoma
PMCID: PMC4201386  PMID: 22249266
5.  An epigenetic mechanism of resistance to targeted therapy in T-cell acute lymphoblastic leukemia 
Nature genetics  2014;46(4):364-370.
The identification of activating NOTCH1 mutations in T-cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSI) that prevent NOTCH1 activation1–3. However, responses have been transient4,5, suggesting that resistance limits clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant ‘persister’ cells that expand in the absence of NOTCH signaling. Rare persisters are already present in naïve T-ALL populations, and the reversibility of the phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persisters activate distinct signaling and transcriptional programs, and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 down-regulates these targets and induces growth arrest and apoptosis in persisters, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy.
PMCID: PMC4086945  PMID: 24584072
6.  Notch signalling in T cell lymphoblastic leukaemia/lymphoma and other haematological malignancies 
The Journal of pathology  2010;223(2):262-273.
Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle yet important roles in other forms of hematologic malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye toward targeted therapeutics.
PMCID: PMC2996483  PMID: 20967796
Notch signaling; oncogene; T-cell lymphoblastic leukemia/lymphoma; chromosomal rearrangements; targeted therapy
7.  An asymptomatic 61-year-old man with BCR-ABL-positive bone marrow following autologous transplantation for multiple myeloma 
American journal of hematology  2010;85(12):944-946.
A 61-year-old man treated with an autologous transplant for multiple myeloma was incidentally found to have a high level of BCR-ABL fusion gene-positive cells in his bone marrow. We describe the clinical decision-making process that led us to initiate therapy with imatinib, despite the absence of any clinical evidence of chronic myelogenous leukemia or other BCR-ABL associated hematologic malignancy.
PMCID: PMC2992107  PMID: 20730794
8.  Notch Signaling Specifies Megakaryocyte Development from Hematopoietic Stem Cells 
Cell stem cell  2008;3(3):314-326.
In the hematopoietic system, Notch signaling specifies T cell lineage fate, in part through negative regulation of B cell and myeloid lineage development. However, we unexpectedly observed the development of megakaryocytes when using heterotypic cocultures of hematopoietic stem cells with OP9 cells expressing Delta-like1, but not with parental OP9 cells. This effect was abrogated by inhibition of Notch signaling either with γ-secretase inhibitors or by expression of the dominant-negative Master-mind-like1. The importance of Notch signaling for megakaryopoietic development in vivo was confirmed by using mutant alleles that either activate or inhibit Notch signaling. These findings indicate that Notch is a positive regulator of megakaryopoiesis and plays a more complex role in cell-fate decisions among myeloid progenitors than previously appreciated.
PMCID: PMC3970322  PMID: 18786418
9.  MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma 
Oncogene  2013;33(13):1736-1742.
NUT midline carcinoma (NMC) is an aggressive type of squamous cell carcinoma that is defined by the presence of BRD-NUT fusion oncogenes, which encode chimeric proteins that block differentiation and maintain tumor growth. BRD-NUT oncoproteins contain two bromodomains whose binding to acetylated histones is required for the blockade of differentiation in NMC, but the mechanisms by which BRD-NUT act remain uncertain. Here we provide evidence that MYC is a key downstream target of BRD4-NUT. Expression profiling of NMCs show that the set of genes whose expression is maintained by BRD4-NUT is highly enriched for MYC upregulated genes, and MYC and BRD4-NUT protein expression is strongly correlated in primary NMCs. More directly, we find that BRD4-NUT associates with the MYC promoter and is required to maintain MYC expression in NMC cell lines. Moreover, both siRNA knockdown of MYC and a dominant-negative form of MYC, omomyc, induce differentiation of NMC cells. Conversely, differentiation of NMC cells induced by knockdown of BRD4-NUT is abrogated by enforced expression of MYC. Together, these findings suggest that MYC is a downstream target of BRD4-NUT that is required for maintenance of NMC cells in an undifferentiated, proliferative state. Our findings support a model in which dysregulation of MYC by BRD-NUT fusion proteins has a central role in the pathogenesis of NMC.
PMCID: PMC3942361  PMID: 23604113
BRD4; NUT; MYC; epigenetic; differentiation; fusion oncogene
10.  Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer 
Cancer cell  2013;23(3):390-405.
Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. SERCA calcium channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies “credential” SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
PMCID: PMC3709972  PMID: 23434461
11.  Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras–initiated leukemia  
The Journal of Clinical Investigation  2008;118(9):3181-3194.
Gain-of-function NOTCH1 mutations are found in 50%–70% of human T cell acute lymphoblastic leukemia/lymphoma (T-ALL) cases. Gain-of-function NOTCH1 alleles that initiate strong downstream signals induce leukemia in mice, but it is unknown whether the gain-of-function NOTCH1 mutations most commonly found in individuals with T-ALL generate downstream signals of sufficient strength to induce leukemia. We addressed this question by expressing human gain-of-function NOTCH1 alleles of varying strength in mouse hematopoietic precursors. Uncommon gain-of-function NOTCH1 alleles that initiated strong downstream signals drove ectopic T cell development and induced leukemia efficiently. In contrast, although gain-of-function alleles that initiated only weak downstream signals also induced ectopic T cell development, these more common alleles failed to efficiently initiate leukemia development. However, weak gain-of-function NOTCH1 alleles accelerated the onset of leukemia initiated by constitutively active K-ras and gave rise to tumors that were sensitive to Notch signaling pathway inhibition. These data show that induction of leukemia requires doses of Notch1 greater than those needed for T cell development and that most NOTCH1 mutations found in T-ALL cells do not generate signals of sufficient strength to initiate leukemia development. Furthermore, low, nonleukemogenic levels of Notch1 can complement other leukemogenic events, such as activation of K-ras. Even when Notch1 participates secondarily, the resulting tumors show “addiction” to Notch, providing a further rationale for evaluating Notch signaling pathway inhibitors in leukemia.
PMCID: PMC2491459  PMID: 18677410
12.  Leukemia-Associated Mutations within the NOTCH1 Heterodimerization Domain Fall into at Least Two Distinct Mechanistic Classes†  
Molecular and Cellular Biology  2006;26(12):4642-4651.
The NOTCH1 receptor is cleaved within its extracellular domain by furin during its maturation, yielding two subunits that are held together noncovalently by a juxtamembrane heterodimerization (HD) domain. Normal NOTCH1 signaling is initiated by the binding of ligand to the extracellular subunit, which renders the transmembrane subunit susceptible to two successive cleavages within and C terminal to the heterodimerization domain, catalyzed by metalloproteases and γ-secretase, respectively. Because mutations in the heterodimerization domain of NOTCH1 occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL), we assessed the effect of 16 putative tumor-associated mutations on Notch1 signaling and HD domain stability. We show here that 15 of the 16 mutations activate canonical NOTCH1 signaling. Increases in signaling occur in a ligand-independent fashion, require γ-secretase activity, and correlate with an increased susceptibility to cleavage by metalloproteases. The activating mutations cause soluble NOTCH1 heterodimers to dissociate more readily, either under native conditions (n = 3) or in the presence of urea (n = 11). One mutation, an insertion of 14 residues immediately N terminal to the metalloprotease cleavage site, increases metalloprotease sensitivity more than all others, despite a negligible effect on heterodimer stability by comparison, suggesting that the insertion may expose the S2 site by repositioning it relative to protective NOTCH1 ectodomain residues. Together, these studies show that leukemia-associated HD domain mutations render NOTCH1 sensitive to ligand-independent proteolytic activation through two distinct mechanisms.
PMCID: PMC1489116  PMID: 16738328
13.  PKCθ Regulates T-Cell Leukemia-Initiating Activity via Reactive Oxygen Species 
Nature medicine  2012;18(11):1693-1698.
Reactive oxygen species (ROS), a by-product of cellular metabolism, damage intracellular macromolecules and, in excess, can promote normal hematopoietic stem cell differentiation and exhaustion1–3. However, mechanisms that regulate ROS levels in leukemia-initiating cells (LICs) and the biological role of ROS in these cells remain largely unknown. We show here the ROSlow subset of CD44+ cells in T-cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T-cell progenitors, to be highly enriched in the most aggressive LICs, and that ROS are maintained at low levels by downregulation of protein kinase C theta (PKCθ). Strikingly, primary mouse T-ALLs lacking PKCθ show improved LIC activity whereas enforced PKCθ expression in both mouse and human primary T-ALLs compromised LIC activity. We also demonstrate that PKCθ is positively regulated by RUNX1, and that NOTCH1, which is frequently activated by mutation in T-ALL4–6 and required for LIC activity in both mouse and human models7,8, downregulates PKCθ and ROS via a novel pathway involving induction of RUNX3 and subsequent repression of RUNX1. These results reveal key functional roles for PKCθ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKCθ expression/activity or ROS accumulation.
PMCID: PMC3738873  PMID: 23086478
14.  Essential Roles for Ankyrin Repeat and Transactivation Domains in Induction of T-Cell Leukemia by Notch1 
Molecular and Cellular Biology  2000;20(20):7505-7515.
Notch receptors participate in a conserved signaling pathway that controls the development of diverse tissues and cell types, including lymphoid cells. Signaling is normally initiated through one or more ligand-mediated proteolytic cleavages that permit nuclear translocation of the intracellular portion of the Notch receptor (ICN), which then binds and activates transcription factors of the Su(H)/CBF1 family. Several mammalian Notch receptors are oncogenic when constitutively active, including Notch1, a gene initially identified based on its involvement in a (7;9) chromosomal translocation found in sporadic T-cell lymphoblastic leukemias and lymphomas (T-ALL). To investigate which portions of ICN1 contribute to transformation, we performed a structure-transformation analysis using a robust murine bone marrow reconstitution assay. Both the ankyrin repeat and C-terminal transactivation domains were required for T-cell leukemogenesis, whereas the N-terminal RAM domain and a C-terminal domain that includes a PEST sequence were nonessential. Induction of T-ALL correlated with the transactivation activity of each Notch1 polypeptide when fused to the DNA-binding domain of GAL4, with the exception of polypeptides deleted of the ankyrin repeats, which lacked transforming activity while retaining strong transactivation activity. Transforming polypeptides also demonstrated moderate to strong activation of the Su(H)/CBF1-sensitive HES-1 promoter, while polypeptides with weak or absent activity on this promoter failed to cause leukemia. These experiments define a minimal transforming region for Notch1 in T-cell progenitors and suggest that leukemogenic signaling involves recruitment of transcriptional coactivators to ICN1 nuclear complexes.
PMCID: PMC86303  PMID: 11003647
15.  Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells 
Cell stem cell  2008;2(4):356-366.
Gain-of-function experiments have demonstrated the potential of Notch signals to expand primitive hematopoietic progenitors, but whether Notch physiologically regulates hematopoietic stem cell (HSC) homeostasis in vivo is unclear. To answer this question, we evaluated the effect of global deficiencies of canonical Notch signaling in rigorous HSC assays. Hematopoietic progenitors expressing dominant negative Mastermind-like1 (DNMAML), a potent inhibitor of Notch-mediated transcriptional activation, achieved stable long-term reconstitution of irradiated hosts and showed a normal frequency of progenitor fractions enriched for long-term HSCs. Similar results were observed with cells lacking CSL/RBPJ, a DNA-binding factor that is required for canonical Notch signaling. Notch-deprived progenitors provided normal long-term reconstitution after secondary competitive transplantation. Furthermore, Notch target genes were expressed at low levels in primitive hematopoietic progenitors. Taken together, these results rule out an essential physiological role for cell-autonomous canonical Notch signals in HSC maintenance.
PMCID: PMC3717373  PMID: 18397755
16.  Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry 
PLoS ONE  2013;8(6):e67306.
Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors), but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of patients for clinical trials.
PMCID: PMC3688991  PMID: 23825651
17.  The Double-Edged Sword of Notch Signaling in Cancer 
Recent deep sequencing of cancer genomes has produced an explosion of new data implicating Notch signaling in several human cancers. Unlike most other pathways, these data indicate that Notch signaling can be either oncogenic or tumor suppressive, depending on the cellular context. In some instances, these relationships were predicted from mouse models or presaged by developmental roles for Notch, but in other cases were unanticipated. This review discusses the pathogenic and translational significance of these new findings.
PMCID: PMC3360804  PMID: 22309843
Notch signaling; tumor suppressor; oncogene
18.  Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11 
Nucleic Acids Research  2013;41(7):4000-4014.
ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation.
PMCID: PMC3627581  PMID: 23408857
19.  Temporal Dissection of Tumorigenesis in Primary Cancers 
Cancer discovery  2011;1(2):137-143.
Timely intervention for cancer requires knowledge of its earliest genetic aberrations. Sequencing of tumors and their metastases reveals numerous abnormalities occurring late in progression. A means to temporally order aberrations in a single cancer, rather than inferring them from serially acquired samples, would define changes preceding even clinically evident disease. We integrate DNA sequence and copy number information to reconstruct the order of abnormalities as individual tumors evolve for two separate cancer types. We detect vast, unreported expansion of simple mutation sharply demarcated by recombinative loss of the second copy of TP53 in cutaneous squamous cell carcinomas (cSCCs) and serous ovarian adenocarcinomas, in the former surpassing 50 mutations per megabase. In cSCCs, we also report diverse secondary mutations in known and novel oncogenic pathways, illustrating how such expanded mutagenesis directly promotes malignant progression. These results reframe paradigms in which TP53 mutation is required later, to bypass senescence induced by driver oncogenes.
PMCID: PMC3187561  PMID: 21984974
mutation; p53; cancer genetics; genomic; Notch
20.  Evidence for Increased Exposure of the Notch1 Metalloprotease Cleavage Site upon Conversion to an Activated Conformation 
Notch proteins are transmembrane receptors that normally adopt a resting state poised to undergo activating proteolysis upon ligand engagement. Receptor quiescence is maintained by three LIN12/Notch repeats (LNRs), which wrap around a heterodimerization domain (HD) divided by furin cleavage at site S1 during maturation. Ligand binding initiates signaling by inducing sensitivity of the HD to proteolysis at the regulated S2 cleavage site. Here, we used hydrogen exchange mass spectrometry to examine the solution dynamics of the Notch1 negative regulatory region in autoinhibited states before and after S1 cleavage, in a proteolytically sensitive “on” state, and in a complex with an inhibitory antibody. Conversion to the “on” state leads to accelerated deuteration in the S2 region and in nearby secondary structural elements within the HD. In contrast, complexation with the inhibitory antibody retards deuteration around the S2 site. Together, these studies reveal how S2 site exposure is promoted by receptor activation and suppressed by inhibitory antibodies.
PMCID: PMC3075624  PMID: 21481777
21.  Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming 
Cancer research  2011;71(7):2686-2696.
NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of and loss-of-expression assays we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC.
PMCID: PMC3070805  PMID: 21447744
BRD4; NUT; epigenetic; differentiation; fusion oncogene
22.  High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling 
The Journal of Experimental Medicine  2011;208(9):1809-1822.
Notch-driven expression of IGF1R promotes the growth, viability, and transplantability of T-ALL cells.
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of Notch1 and PI3K–Akt pathways. Although mutations that activate PI3K–Akt signaling have previously been identified, the relative contribution of growth factor-dependent activation is unclear. We show here that pharmacologic inhibition or genetic deletion of insulin-like growth factor 1 receptor (IGF1R) blocks the growth and viability of T-ALL cells, whereas moderate diminution of IGF1R signaling compromises leukemia-initiating cell (LIC) activity as defined by transplantability in syngeneic/congenic secondary recipients. Furthermore, IGF1R is a Notch1 target, and Notch1 signaling is required to maintain IGF1R expression at high levels in T-ALL cells. These findings suggest effects of Notch on LIC activity may be mediated in part by enhancing the responsiveness of T-ALL cells to ambient growth factors, and provide strong rationale for use of IGF1R inhibitors to improve initial response to therapy and to achieve long-term cure of patients with T-ALL.
PMCID: PMC3171095  PMID: 21807868
23.  The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia 
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long-term survival of patients with AML has changed little over the past decade, necessitating the identification and validation of new AML targets. Integration of genomic approaches with small-molecule and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. Here, we identified a role for glycogen synthase kinase 3α (GSK-3α) in AML by performing 2 independent small-molecule library screens and an shRNA screen for perturbations that induced a differentiation expression signature in AML cells. GSK-3 is a serine-threonine kinase involved in diverse cellular processes, including differentiation, signal transduction, cell cycle regulation, and proliferation. We demonstrated that specific loss of GSK-3α induced differentiation in AML by multiple measurements, including induction of gene expression signatures, morphological changes, and cell surface markers consistent with myeloid maturation. GSK-3α–specific suppression also led to impaired growth and proliferation in vitro, induction of apoptosis, loss of colony formation in methylcellulose, and anti-AML activity in vivo. Although the role of GSK-3β has been well studied in cancer development, these studies support a role for GSK-3α in AML.
PMCID: PMC3287215  PMID: 22326953
24.  Structural and Mechanistic Insights into Cooperative Assembly of Dimeric Notch Transcription Complexes 
Nature structural & molecular biology  2010;17(11):1312-1317.
Ligand-induced proteolysis of Notch produces an intracellular effector domain that transduces essential signals by regulating target gene transcription. This function relies on formation of transcriptional activation complexes that include intracellular Notch, a Mastermind co-activator, and the CSL transcription factor bound to cognate DNA. These complexes form higher order assemblies on paired, head-to-head CSL recognition sites. Here, we report the X-ray structure of a dimeric human Notch1 transcription complex loaded on the paired site from the human HES1 promoter. The small interface between the Notch ankyrin domains can accommodate DNA bending and untwisting to allow a range of spacer lengths between the two sites. Remarkably, cooperative dimerization occurs on the Hes5 promoter at a sequence that diverges from the CSL-binding consensus at one of the sites. These studies reveal how promoter organizational features control cooperativity and thus, the responsiveness of different promoters to Notch signaling.
PMCID: PMC3024583  PMID: 20972443
25.  Notch Ankyrin Repeat Domain Variation Influences Leukemogenesis and Myc Transactivation 
PLoS ONE  2011;6(10):e25645.
The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival.
Principal Findings
We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture. However, unlike ICN1-3, ICN4 fails to induce T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and is unable to rescue the growth of Notch1-dependent T-ALL cell lines. The ICN4 phenotype is mimicked by weak gain-of-function forms of Notch1, suggesting that it stems from a failure to transactivate one or more critical target genes above a necessary threshold. Experiments with chimeric receptors demonstrate that the Notch ankyrin repeat domains differ in their leukemogenic potential, and that this difference correlates with activation of Myc, a direct Notch target that has an important role in Notch-associated T-ALL.
We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis.
PMCID: PMC3192765  PMID: 22022427

Results 1-25 (44)