PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase 
The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution.
Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P42212, with unit-cell parameters a = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.
doi:10.1107/S174430910702163X
PMCID: PMC2335075  PMID: 17554172
angular dioxygenases; NAD(P)H:ferredoxin oxidoreductases; Rieske nonhaem iron oxygenase system; electron transfer; carbazole
2.  Plasmid pCAR3 Contains Multiple Gene Sets Involved in the Conversion of Carbazole to Anthranilate†  
The carbazole degradative car-I gene cluster (carAaIBaIBbICIAcI) of Sphingomonas sp. strain KA1 is located on the 254-kb circular plasmid pCAR3. Carbazole conversion to anthranilate is catalyzed by carbazole 1,9a-dioxygenase (CARDO; CarAaIAcI), meta-cleavage enzyme (CarBaIBbI), and hydrolase (CarCI). CARDO is a three-component dioxygenase, and CarAaI and CarAcI are its terminal oxygenase and ferredoxin components. The car-I gene cluster lacks the gene encoding the ferredoxin reductase component of CARDO. In the present study, based on the draft sequence of pCAR3, we found multiple carbazole degradation genes dispersed in four loci on pCAR3, including a second copy of the car gene cluster (carAaIIBaIIBbIICIIAcII) and the ferredoxin/reductase genes fdxI-fdrI and fdrII. Biotransformation experiments showed that FdrI (or FdrII) could drive the electron transfer chain from NAD(P)H to CarAaI (or CarAaII) with the aid of ferredoxin (CarAcI, CarAcII, or FdxI). Because this electron transfer chain showed phylogenetic relatedness to that consisting of putidaredoxin and putidaredoxin reductase of the P450cam monooxygenase system of Pseudomonas putida, CARDO systems of KA1 can be classified in the class IIA Rieske non-heme iron oxygenase system. Reverse transcription-PCR (RT-PCR) and quantitative RT-PCR analyses revealed that two car gene clusters constituted operons, and their expression was induced when KA1 was exposed to carbazole, although the fdxI-fdrI and fdrII genes were expressed constitutively. Both terminal oxygenases of KA1 showed roughly the same substrate specificity as that from the well-characterized carbazole degrader Pseudomonas resinovorans CA10, although slight differences were observed.
doi:10.1128/AEM.72.5.3198-3205.2006
PMCID: PMC1472349  PMID: 16672458
3.  Purification and Characterization of Carbazole 1,9a-Dioxygenase, a Three-Component Dioxygenase System of Pseudomonas resinovorans Strain CA10 
Applied and Environmental Microbiology  2002;68(12):5882-5890.
The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 consists of terminal oxygenase (CarAa), ferredoxin (CarAc), and ferredoxin reductase (CarAd). Each component of CARDO was expressed in Escherichia coli strain BL21(DE3) as a native form (CarAa) or a His-tagged form (CarAc and CarAd) and was purified to apparent homogeneity. CarAa was found to be trimeric and to have one Rieske type [2Fe-2S] cluster and one mononuclear iron center in each monomer. Both His-tagged proteins were found to be monomeric and to contain the prosthetic groups predicted from the deduced amino acid sequence (His-tagged CarAd, one FAD and one [2Fe-2S] cluster per monomer protein; His-tagged CarAc, one Rieske type [2Fe-2S] cluster per monomer protein). Both NADH and NADPH were effective as electron donors for His-tagged CarAd. However, since the kcat/Km for NADH is 22.3-fold higher than that for NADPH in the 2,6-dichlorophenolindophenol reductase assay, NADH was supposed to be the physiological electron donor of CarAd. In the presence of NADH, His-tagged CarAc was reduced by His-tagged CarAd. Similarly, CarAa was reduced by His-tagged CarAc, His-tagged CarAd, and NADH. The three purified proteins could reconstitute the CARDO activity in vitro. In the reconstituted CARDO system, His-tagged CarAc seemed to be indispensable for electron transport, while His-tagged CarAd could be replaced by some unrelated reductases.
doi:10.1128/AEM.68.12.5882-5890.2002
PMCID: PMC134387  PMID: 12450807

Results 1-3 (3)