PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids 
PLoS ONE  2014;9(2):e86490.
Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.
doi:10.1371/journal.pone.0086490
PMCID: PMC3933340  PMID: 24586250
2.  Draft Genome Sequence of Gluconobacter frateurii NBRC 103465, a Glyceric Acid-Producing Strain 
Genome Announcements  2013;1(4):e00369-13.
Gluconobacter frateurii strain NBRC 103465 can efficiently produce glyceric acid (GA) from raw glycerol feedstock derived from biodiesel fuel production processes. Here, we report the 3.4-Mb draft genome sequence of G. frateurii NBRC 103465. The draft genome sequence can be applied to examine the enzymes and electron transport system involved in GA production.
doi:10.1128/genomeA.00369-13
PMCID: PMC3735062  PMID: 23887908
3.  Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol 
AMB Express  2013;3:20.
To enhance the value-added use of methanol-containing raw glycerol derived from biodiesel fuel production, the effect of methanol supplementation on glyceric acid (GA) production by Gluconobacter spp. was investigated. We first conducted fed-batch fermentation with Gluconobacter frateurii NBRC103465 using raw glycerol as a feeding solution. GA productivity decreased with increasing dihydroxyacetone (DHA) formation when the raw glycerol contained methanol. The results of this experiment and comparative experiments using a synthetic solution modeled after the raw glycerol indicate that the presence of methanol caused a change in the concentrations of GA and DHA, two glycerol derivatives produced during fermentation. Other Gluconobacter spp. also decreased GA production in the presence of 1% (v/v) methanol. In addition, purified membrane-bound alcohol dehydrogenase (mADH) from Gluconobacter oxydans, which is a key enzyme in GA production, showed a decrease in dehydrogenase activity toward glycerol as the methanol concentration increased. These results strongly suggest that the observed decrease in GA production by Gluconobacter spp. resulted from the methanol-induced inhibition of mADH-mediated glycerol oxidation.
doi:10.1186/2191-0855-3-20
PMCID: PMC3627625  PMID: 23547945
Acetic acid bacteria; Glyceric acid; Methanol; Membrane-bound alcohol dehydrogenase; Raw glycerol
4.  Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol ▿ †  
Applied and Environmental Microbiology  2009;75(24):7760-7766.
Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process.
doi:10.1128/AEM.01535-09
PMCID: PMC2794115  PMID: 19837846
5.  Transcription Factors CysB and SfnR Constitute the Hierarchical Regulatory System for the Sulfate Starvation Response in Pseudomonas putida▿ †  
Journal of Bacteriology  2008;190(13):4521-4531.
Pseudomonas putida DS1 is able to utilize dimethyl sulfone as a sulfur source. Expression of the sfnFG operon responsible for dimethyl sulfone oxygenation is directly regulated by a σ54-dependent transcriptional activator, SfnR, which is encoded within the sfnECR operon. We investigated the transcription mechanism for the sulfate starvation-induced expression of these sfn operons. Using an in vivo transcription assay and in vitro DNA-binding experiments, we revealed that SfnR negatively regulates the expression of sfnECR by binding to the downstream region of the transcription start point. Additionally, we demonstrated that a LysR-type transcriptional regulator, CysB, directly activates the expression of sfnECR by binding to its upstream region. CysB is a master regulator that controls the sulfate starvation response of the sfn operons, as is the case for the sulfonate utilization genes of Escherichia coli, although CysBDS1 appeared to differ from that of E. coli CysB in terms of the effect of O-acetylserine on DNA-binding ability. Furthermore, we investigated what effector molecules repress the expression of sfnFG and sfnECR in vivo by using the disruptants of the sulfate assimilatory genes cysNC and cysI. The measurements of mRNA levels of the sfn operons in these gene disruptants suggested that the expression of sfnFG is repressed by sulfate itself while the expression of sfnECR is repressed by the downstream metabolites in the sulfate assimilatory pathway, such as sulfide and cysteine. These results indicate that SfnR plays a role independent of CysB in the sulfate starvation-induced expression of the sfn operons.
doi:10.1128/JB.00217-08
PMCID: PMC2446806  PMID: 18456803
6.  The Sphingomonas Plasmid pCAR3 Is Involved in Complete Mineralization of Carbazole▿ †  
Journal of Bacteriology  2006;189(5):2007-2020.
We determined the complete 254,797-bp nucleotide sequence of the plasmid pCAR3, a carbazole-degradative plasmid from Sphingomonas sp. strain KA1. A region of about 65 kb involved in replication and conjugative transfer showed similarity to a region of plasmid pNL1 isolated from the aromatic-degrading Novosphingobium aromaticivorans strain F199. The presence of many insertion sequences, transposons, repeat sequences, and their remnants suggest plasticity of this plasmid in genetic structure. Although pCAR3 is thought to carry clustered genes for conjugative transfer, a filter-mating assay between KA1 and a pCAR3-cured strain (KA1W) was unsuccessful, indicating that pCAR3 might be deficient in conjugative transfer. Several degradative genes were found on pCAR3, including two kinds of carbazole-degradative gene clusters (car-I and car-II), and genes for electron transfer components of initial oxygenase for carbazole (fdxI, fdrI, and fdrII). Putative genes were identified for the degradation of anthranilate (and), catechol (cat), 2-hydroxypenta-2,4-dienoate (carDFE), dibenzofuran/fluorene (dbf/fln), protocatechuate (lig), and phthalate (oph). It appears that pCAR3 may carry clustered genes (car-I, car-II, fdxI, fdrI, fdrII, and, and cat) for the degradation of carbazole into tricarboxylic acid cycle intermediates; KA1W completely lost the ability to grow on carbazole, and the carbazole-degradative genes listed above were all expressed when KA1 was grown on carbazole. Reverse transcription-PCR analysis also revealed that the transcription of car-I, car-II, and cat genes was induced by carbazole or its metabolic intermediate. Southern hybridization analyses with probes prepared from car-I, car-II, repA, parA, traI, and traD genes indicated that several Sphingomonas carbazole degraders have DNA regions similar to parts of pCAR3.
doi:10.1128/JB.01486-06
PMCID: PMC1855757  PMID: 17172338
7.  Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase 
The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution.
Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-­O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P21, with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R merge of 8.0% and a completeness of 100%. Its V M value is 2.63 Å3 Da−1, indicating a solvent content of 53.2%.
doi:10.1107/S1744309105014557
PMCID: PMC1952320  PMID: 16511100
angular dioxygenases; carbazole; electron-transfer complexes; Rieske non-haem iron oxygenase systems; Rieske-type ferredoxins; Rieske-type proteins
8.  Plasmid pCAR3 Contains Multiple Gene Sets Involved in the Conversion of Carbazole to Anthranilate†  
The carbazole degradative car-I gene cluster (carAaIBaIBbICIAcI) of Sphingomonas sp. strain KA1 is located on the 254-kb circular plasmid pCAR3. Carbazole conversion to anthranilate is catalyzed by carbazole 1,9a-dioxygenase (CARDO; CarAaIAcI), meta-cleavage enzyme (CarBaIBbI), and hydrolase (CarCI). CARDO is a three-component dioxygenase, and CarAaI and CarAcI are its terminal oxygenase and ferredoxin components. The car-I gene cluster lacks the gene encoding the ferredoxin reductase component of CARDO. In the present study, based on the draft sequence of pCAR3, we found multiple carbazole degradation genes dispersed in four loci on pCAR3, including a second copy of the car gene cluster (carAaIIBaIIBbIICIIAcII) and the ferredoxin/reductase genes fdxI-fdrI and fdrII. Biotransformation experiments showed that FdrI (or FdrII) could drive the electron transfer chain from NAD(P)H to CarAaI (or CarAaII) with the aid of ferredoxin (CarAcI, CarAcII, or FdxI). Because this electron transfer chain showed phylogenetic relatedness to that consisting of putidaredoxin and putidaredoxin reductase of the P450cam monooxygenase system of Pseudomonas putida, CARDO systems of KA1 can be classified in the class IIA Rieske non-heme iron oxygenase system. Reverse transcription-PCR (RT-PCR) and quantitative RT-PCR analyses revealed that two car gene clusters constituted operons, and their expression was induced when KA1 was exposed to carbazole, although the fdxI-fdrI and fdrII genes were expressed constitutively. Both terminal oxygenases of KA1 showed roughly the same substrate specificity as that from the well-characterized carbazole degrader Pseudomonas resinovorans CA10, although slight differences were observed.
doi:10.1128/AEM.72.5.3198-3205.2006
PMCID: PMC1472349  PMID: 16672458
9.  Characterization of Novel Carbazole Catabolism Genes from Gram-Positive Carbazole Degrader Nocardioides aromaticivorans IC177†  
Nocardioides aromaticivorans IC177 is a gram-positive carbazole degrader. The genes encoding carbazole degradation (car genes) were cloned into a cosmid clone and sequenced partially to reveal 19 open reading frames. The car genes were clustered into the carAaCBaBbAcAd and carDFE gene clusters, encoding the enzymes responsible for the degradation of carbazole to anthranilate and 2-hydroxypenta-2,4-dienoate and of 2-hydroxypenta-2,4-dienoate to pyruvic acid and acetyl coenzyme A, respectively. The conserved amino acid motifs proposed to bind the Rieske-type [2Fe-2S] cluster and mononuclear iron, the Rieske-type [2Fe-2S] cluster, and flavin adenine dinucleotide were found in the deduced amino acid sequences of carAa, carAc, and carAd, respectively, which showed similarities with CarAa from Sphingomonas sp. strain KA1 (49% identity), CarAc from Pseudomonas resinovorans CA10 (31% identity), and AhdA4 from Sphingomonas sp. strain P2 (37% identity), respectively. Escherichia coli cells expressing CarAaAcAd exhibited major carbazole 1,9a-dioxygenase (CARDO) activity. These data showed that the IC177 CARDO is classified into class IIB, while gram-negative CARDOs are classified into class III or IIA, indicating that the respective CARDOs have diverse types of electron transfer components and high similarities of the terminal oxygenase. Reverse transcription-PCR (RT-PCR) experiments showed that the carAaCBaBbAcAd and carDFE gene clusters are operonic. The results of quantitative RT-PCR experiments indicated that transcription of both operons is induced by carbazole or its metabolite, whereas anthranilate is not an inducer. Biotransformation analysis showed that the IC177 CARDO exhibits significant activities for naphthalene, carbazole, and dibenzo-p-dioxin but less activity for dibenzofuran and biphenyl.
doi:10.1128/AEM.72.5.3321-3329.2006
PMCID: PMC1472339  PMID: 16672473
10.  Characterization of the Replication, Maintenance, and Transfer Features of the IncP-7 Plasmid pCAR1, Which Carries Genes Involved in Carbazole and Dioxin Degradation†  
Isolated from Pseudomonas resinovorans CA10, pCAR1 is a 199-kb plasmid that carries genes involved in the degradation of carbazole and dioxin. The nucleotide sequence of pCAR1 has been determined previously. In this study, we characterized pCAR1 in terms of its replication, maintenance, and conjugation. By constructing miniplasmids of pCAR1 and testing their establishment in Pseudomonas putida DS1, we show that pCAR1 replication is due to the repA gene and its upstream DNA region. The repA gene and putative oriV region could be separated in P. putida DS1, and the oriV region was determined to be located within the 345-bp region between the repA and parW genes. Incompatibility testing using the minireplicon of pCAR1 and IncP plasmids indicated that pCAR1 belongs to the IncP-7 group. Monitoring of the maintenance properties of serial miniplasmids in nonselective medium, and mutation and complementation analyses of the parWABC genes, showed that the stability of pCAR1 is attributable to the products of the parWAB genes. In mating assays, the transfer of pCAR1 from CA10 was detected in a CA10 derivative that was cured of pCAR1 (CA10dm4) and in P. putida KT2440 at frequencies of 3 × 10−1 and 3 × 10−3 per donor strain, respectively. This is the first report of the characterization of this completely sequenced IncP-7 plasmid.
doi:10.1128/AEM.72.5.3206-3216.2006
PMCID: PMC1472330  PMID: 16672459
11.  Transcriptional Regulation of the ant Operon, Encoding Two-Component Anthranilate 1,2-Dioxygenase, on the Carbazole-Degradative Plasmid pCAR1 of Pseudomonas resinovorans Strain CA10 
Journal of Bacteriology  2004;186(20):6815-6823.
The carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10 has two gene clusters, carAaAaBaBbCAcAdDFE and antABC, which are involved in the conversions of carbazole to anthranilate and anthranilate to catechol, respectively. We proved that the antABC gene cluster, encoding two-component anthranilate 1,2-dioxygenase, constitutes a single transcriptional unit through Northern hybridization and reverse transcription-PCR (RT-PCR) analyses. The transcription start point of antA was mapped at 53 bp upstream point of its translation start point, and the −10 and −35 boxes were homologous to conserved σ70 recognition sequence. Hence the promoter of the ant operon was designated Pant. 5′ Deletion analyses using luciferase as a reporter showed that the region up to at least 70 bp from the transcription start point of antA was necessary for the activation of Pant. Luciferase expression from Pant was induced by anthranilate itself, but not by catechol. Two probable AraC/XylS-type regulatory genes found on pCAR1, open reading frame 22 (ORF22) and ORF23, are tandemly located 3.2 kb upstream of the antA gene. We revealed that the product of ORF23, designated AntR, is indispensable for the stimulation of Pant in Pseudomonas putida cells. Northern hybridization and RT-PCR analyses revealed that another copy of Pant, which is thought to be translocated about 2.1 kb upstream of the carAa gene as a consequence of the transposition of ISPre1, actually drives transcription of the carAa gene in the presence of anthranilate, indicating that both ant and car operons are simultaneously regulated by AntR.
doi:10.1128/JB.186.20.6815-6823.2004
PMCID: PMC522213  PMID: 15466034
12.  Characterization of the Upper Pathway Genes for Fluorene Metabolism in Terrabacter sp. Strain DBF63 
Journal of Bacteriology  2004;186(17):5938-5944.
Genes involved in the degradation of fluorene to phthalate were characterized in the fluorene degrader Terrabacter sp. strain DBF63. The initial attack on both fluorene and 9-fluorenone was catalyzed by DbfA to yield 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone, respectively. The FlnB protein exhibited activities against both 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone to produce 9-fluorenone and 2′-carboxy-2,3-dihydroxybiphenyl, respectively. FlnD is a heteromeric protein encoded by flnD1 and ORF16, being a member of the class III two-subunit extradiol dioxygenase. FlnE was identified as a serine hydrolase for the meta-cleavage products that yield phthalate.
doi:10.1128/JB.186.17.5938-5944.2004
PMCID: PMC516849  PMID: 15317800
13.  Purification and Characterization of Carbazole 1,9a-Dioxygenase, a Three-Component Dioxygenase System of Pseudomonas resinovorans Strain CA10 
Applied and Environmental Microbiology  2002;68(12):5882-5890.
The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 consists of terminal oxygenase (CarAa), ferredoxin (CarAc), and ferredoxin reductase (CarAd). Each component of CARDO was expressed in Escherichia coli strain BL21(DE3) as a native form (CarAa) or a His-tagged form (CarAc and CarAd) and was purified to apparent homogeneity. CarAa was found to be trimeric and to have one Rieske type [2Fe-2S] cluster and one mononuclear iron center in each monomer. Both His-tagged proteins were found to be monomeric and to contain the prosthetic groups predicted from the deduced amino acid sequence (His-tagged CarAd, one FAD and one [2Fe-2S] cluster per monomer protein; His-tagged CarAc, one Rieske type [2Fe-2S] cluster per monomer protein). Both NADH and NADPH were effective as electron donors for His-tagged CarAd. However, since the kcat/Km for NADH is 22.3-fold higher than that for NADPH in the 2,6-dichlorophenolindophenol reductase assay, NADH was supposed to be the physiological electron donor of CarAd. In the presence of NADH, His-tagged CarAc was reduced by His-tagged CarAd. Similarly, CarAa was reduced by His-tagged CarAc, His-tagged CarAd, and NADH. The three purified proteins could reconstitute the CARDO activity in vitro. In the reconstituted CARDO system, His-tagged CarAc seemed to be indispensable for electron transport, while His-tagged CarAd could be replaced by some unrelated reductases.
doi:10.1128/AEM.68.12.5882-5890.2002
PMCID: PMC134387  PMID: 12450807
14.  Degradation of Chlorinated Dibenzofurans and Dibenzo-p-Dioxins by Two Types of Bacteria Having Angular Dioxygenases with Different Features 
Two kinds of bacteria having different-structured angular dioxygenases—a dibenzofuran (DF)-utilizing bacterium, Terrabacter sp. strain DBF63, and a carbazole (CAR)-utilizing bacterium, Pseudomonas sp. strain CA10—were investigated for their ability to degrade some chlorinated dibenzofurans (CDFs) and chlorinated dibenzo-p-dioxins (CDDs) (or, together, CDF/Ds) using either wild-type strains or recombinant Escherichia coli strains. First, it was shown that CAR 1,9a-dioxygenase (CARDO) catalyzed angular dioxygenation of all mono- to triCDF/Ds investigated in this study, but DF 4,4a-dioxygenase (DFDO) did not degrade 2,7-diCDD. Secondly, degradation of CDF/Ds by the sets of three enzymes (angular dioxygenase, extradiol dioxygenase, and meta-cleavage compound hydrolase) was examined, showing that these enzymes in both strains were able to convert 2-CDF to 5-chlorosalicylic acid but not other tested substrates to the corresponding chlorosalicylic acid (CSA) or chlorocatechol (CC). Finally, we tested the potential of both wild-type strains for cooxidation of CDF/Ds and demonstrated that both strains degraded 2-CDF, 2-CDD, and 2,3-diCDD to the corresponding CSA and CC. We investigated the sites for the attack of angular dioxygenases in each CDF/D congener, suggesting the possibility that the angular dioxygenation of 2-CDF, 2-CDD, 2,3-diCDD, and 1,2,3-triCDD (10 ppm each) by both DFDO and CARDO occurred mainly on the nonsubstituted aromatic nuclei.
doi:10.1128/AEM.67.8.3610-3617.2001
PMCID: PMC93062  PMID: 11472938
15.  Genetic Characterization and Evolutionary Implications of a car Gene Cluster in the Carbazole Degrader Pseudomonas sp. Strain CA10 
Journal of Bacteriology  2001;183(12):3663-3679.
The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5′ portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.
doi:10.1128/JB.183.12.3663-3679.2001
PMCID: PMC95244  PMID: 11371531

Results 1-15 (15)