Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The diaphragms of fenestrated endothelia – gatekeepers of vascular permeability and blood composition 
Developmental cell  2012;23(6):1203-1218.
Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries causing a major leak of plasma proteins. This disruption results in early death of animals due to severe non-inflammatory protein loosing enteropathy. Deletion of PV1 in endothelium, but not the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition.
PMCID: PMC3525343  PMID: 23237953
2.  PV1 downregulation via shRNA inhibits the growth of pancreatic adenocarcinoma xenografts 
PV1 is an endothelial specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumors. Based on in vitro data, PV1 is thought to actively participate in angiogenesis. In order to test whether PV1 has a function in tumor angiogenesis and in tumor growth in vivo, we have treated pancreatic tumor bearing mice by single dose intratumoral delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 downregulation by shRNAs inhibits the growth of established tumors derived from two different human pancreatic adenocarcinoma cell lines (AsPC-1 and BxPC-3). The effect observed is due to downregulation of PV1 in the tumor endothelial cells of host origin, PV1 being specifically expressed in tumor vascular endothelial cells and not in cancer or other stromal cells. There are no differences in vascular density of tumors treated or not with PV1 shRNA and gain and loss of function of PV1 in endothelial cells does not modify either their proliferation or migration, suggesting that tumor angiogenesis is not impaired. Together, our data argue that down regulation of PV1 in tumor endothelial cells results in the inhibition of tumor growth via a mechanism different from inhibiting angiogenesis.
PMCID: PMC3435473  PMID: 22568538
angiogenesis; fenestrae; vesiculo-vacuolar organelles; caveolae; pancreatic cancer; transendothelial channels; tumor microenvironment
3.  Plasmalemmal vesicle associated protein (PV1) modulates SV40 virus infectivity in CV-1 cells 
Plasmalemmal vesicle associated protein (Plvap/PV1) is a structural protein required for the formation of the stomatal diaphragms of caveolae. Caveolae are plasma membrane invaginations that were implicated in SV40 virus entry in primate cells. Here we show that de novo Plvap/PV1 expression in CV-1 green monkey epithelial cells significantly reduces the ability of SV40 virus to establish productive infection, when cells are incubated with low concentrations of the virus. However, in presence of high viral titers PV1 has no effect on SV40 virus infectivity. Mechanistically, PV1 expression does not reduce the cell surface expression of known SV40 receptors such as GM1 ganglioside and MHC class I proteins. Furthermore, PV1 does not reduce the binding of virus-like particles made by SV40 VP1 protein to the CV-1 cell surface and does not impact their internalization when cells are incubated with either high or low VLP concentrations. These results suggest that PV1 protein is able to block SV40 infectivity at low but not at high viral concentration either by interfering with the infective internalization pathway at the cell surface or at a post internalization step.
PMCID: PMC3171970  PMID: 21827737
4.  Evidence for tankyrases as antineoplastic targets in lung cancer 
BMC Cancer  2013;13:211.
New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex.
This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls.
Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models.
Findings reported here uncovered deregulation of specific components of the Wnt pathway in both human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to target the Wnt pathway to combat lung cancer.
PMCID: PMC3644501  PMID: 23621985
Lung cancer; Wnt pathway; Tankyrase inhibitors; TNKS; TNKS2
5.  Caveolae, Fenestrae and Transendothelial Channels Retain PV1 on the Surface of Endothelial Cells 
PLoS ONE  2012;7(3):e32655.
PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to determine whether the formation of diaphragms is the only cellular role of PV1. We addressed this question by measuring the effect of complete and partial removal of structures capable of forming diaphragms on PV1 protein level. Removal of caveolae in mice by knocking out caveolin-1 or cavin-1 resulted in a dramatic reduction of PV1 protein level in lungs but not kidneys. The magnitude of PV1 reduction correlated with the abundance of structures capable of forming diaphragms in the microvasculature of these organs. The absence of caveolae in the lung ECs did not affect the transcription or translation of PV1, but it caused a sharp increase in PV1 protein internalization rate via a clathrin- and dynamin-independent pathway followed by degradation in lysosomes. Thus, PV1 is retained on the cell surface of ECs by structures capable of forming diaphragms, but undergoes rapid internalization and degradation in the absence of these structures, suggesting that formation of diaphragms is the only role of PV1.
PMCID: PMC3293851  PMID: 22403691
6.  PV1 Is a Key Structural Component for the Formation of the Stomatal and Fenestral Diaphragms 
Molecular Biology of the Cell  2004;15(8):3615-3630.
PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that treatment of endothelial cells in culture with phorbol myristate acetate (PMA) led to upregulation of PV1. This correlated with de novo formation of stomatal diaphragms of caveolae and transendothelial channels as well as fenestrae upon PMA treatment. The newly formed diaphragms could be labeled with anti-PV1 antibodies. The upregulation of PV1 and formation of stomatal and fenestral diaphragms by PMA was endothelium specific and was the highest in microvascular endothelial cells compared with their large vessel counterparts. By using a siRNA approach, PV1 mRNA silencing prevented the de novo formation of the diaphragms of caveolae as well as fenestrae and transendothelial channels. Overexpression of PV1 in endothelial cells as well as in cell types that do not harbor caveolar diaphragms in situ induced de novo formation of caveolar stomatal diaphragms. Lastly, PV1 upregulation by PMA required the activation of Erk1/2 MAP kinase pathway and was protein kinase C independent. Taken together, these data show that PV1 is a key structural component, necessary for the biogenesis of the stomatal and fenestral diaphragms.
PMCID: PMC491823  PMID: 15155804
7.  Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy 
Proceedings of SPIE  2013;8584:858403.
The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3–10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a positive iron contrast enhancement and a reduced signal to noise ratio, for effective observation and quantification of Fe/mNP concentrations in the clinical setting.
PMCID: PMC4182929  PMID: 25285190
Magnetic nanoparticle; Imaging; Tumor vascular modification; EPR effect
8.  Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging 
Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations.
Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system.
The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors.
This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo.
PMCID: PMC4016173  PMID: 24217944
Tracer kinetic modeling; Cancer; Mouse model; PV1
9.  Mast cells impair the development of protective anti-tumor immunity 
Cancer immunology, immunotherapy : CII  2012;61(12):10.1007/s00262-012-1276-7.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-γ+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor specific IFN-γ+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.
PMCID: PMC3808181  PMID: 22684520
10.  Endothelial Targeting of Polymeric Nanoparticles Stably Labeled with the PET Imaging Radiosotope Iodine-124 
Biomaterials  2012;33(21):5406-5413.
Targeting of therapeutics or imaging agents to the endothelium has the potential to improve specificity and effectiveness of treatment for many diseases. One strategy to achieve this goal is the use of nanoparticles (NPs) targeted to the endothelium by ligands of protein determinants present on this tissue, including cell adhesion molecules, peptidases, and cell receptors. However, detachment of the radiolabel probes from NPs poses a significant problem. In this study, we devised polymeric NPs directly labeled with radioiodine isotopes including the position emission tomography (PET) isotope 124I, and characterized their targeting to specific endothelial determinants. This approach provided sizable, targetable probes for specific detection of endothelial surface determinants non-invasively in live animals. Direct conjugation of radiolabel to NPs allowed for stable longitudinal tracking of tissue distribution without label detachment even in an aggressive proteolytic environment. Further, this approach permits tracking of NP pharmacokinetics in real-time and non-invasive imaging of the lung in mice using micro-PET imaging. The use of this strategy will considerably improve investigation of NP interactions with target cells and PET imaging in small animals, which ultimately can aid in the optimization of targeted drug delivery.
PMCID: PMC3356447  PMID: 22560201
nanoparticle; endothelial targeting; PET imaging; targeted drug delivery
11.  Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae 
Cell  2011;144(3):402-413.
The precise role of caveolae, the characteristic plasma membrane invaginations present in many cells, still remains debated. The high density of caveolae in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by cell osmotic swelling or by uniaxial stretching results in the immediate disappearance of caveolae, which is associated with a reduced caveolin/Cavin1 interaction, and an increase of free caveolins at the plasma membrane. Tether pulling force measurements in live cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin and ATP-independent cell response which buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that allows cells to quickly accommodate sudden and acute mechanical stresses.
PMCID: PMC3042189  PMID: 21295700
Cancer research  2008;68(18):7684-7691.
Dendritic cells (DCs) and cytokines that expand myeloid progenitors are widely used to treat cancer. Here we demonstrate that CD11c+DEC205+ DCs co-expressing α-Smooth Muscle Actin and VE-Cadherin home to perivascular areas in the ovarian cancer microenvironment and are required for the maintenance of tumor vasculature. Consequently, depletion of DCs in mice bearing established ovarian cancer by targeting different specific markers significantly delays tumor growth and enhances the effect of standard chemotherapies. Tumor growth restriction was associated with vascular apoptosis after DC ablation followed by necrosis, which triggered an anti-tumor immunogenic boost. Our findings provide a mechanistic rationale for selectively eliminating tumor-associated leukocytes to promote anti-tumor immunity while impeding tumor vascularization, and to develop more effective DC vaccines based on a better understanding of the tumor microenvironment.
PMCID: PMC2742361  PMID: 18768667
14.  The FGF system has a key role in regulating vascular integrity 
The Journal of Clinical Investigation  2008;118(10):3355-3366.
The integrity of the endothelial monolayer is essential to blood vessel homeostasis and active regulation of endothelial permeability. The FGF system plays important roles in a wide variety of physiologic and pathologic conditions; however, its role in the adult vasculature has not been defined. To assess the role of the FGF system in the adult endothelial monolayer, we disrupted FGF signaling in bovine aortic endothelial cells and human saphenous vein endothelial cells in vitro and in adult mouse and rat endothelial cells in vivo using soluble FGF traps or a dominant inhibitor of all FGF receptors. The inhibition of FGF signaling using these approaches resulted in dissociation of the VE-cadherin/p120-catenin complex and disassembly of adherens and tight junctions, which progressed to loss of endothelial cells, severe impairment of the endothelial barrier function, and finally, disintegration of the vasculature. Thus, FGF signaling plays a key role in the maintenance of vascular integrity.
PMCID: PMC2528913  PMID: 18776942
15.  Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels 
Journal of Clinical Investigation  2006;116(5):1284-1291.
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels.
PMCID: PMC1451207  PMID: 16670769
16.  Intersectin Regulates Fission and Internalization of Caveolae in Endothelial Cells 
Molecular Biology of the Cell  2003;14(12):4997-5010.
Intersectin, a multiple Eps15 homology and Src homology 3 (SH3) domain–containing protein, is a component of the endocytic machinery in neurons and nonneuronal cells. However, its role in endocytosis via caveolae in endothelial cells (ECs) is unclear. We demonstrate herein by coimmunoprecipitation, velocity sedimentation on glycerol gradients, and cross-linking that intersectin is present in ECs in a membrane-associated protein complex containing dynamin and SNAP-23. Electron microscopy (EM) immunogold labeling studies indicated that intersectin associated preferentially with the caveolar necks, and it remained associated with caveolae after their fission from the plasmalemma. A cell-free system depleted of intersectin failed to support caveolae fission from the plasma membrane. A biotin assay used to quantify caveolae internalization and extensive EM morphological analysis of ECs overexpressing wt-intersectin indicated a wide range of morphological changes (i.e., large caveolae clusters marginated at cell periphery and pleiomorphic caveolar necks) as well as impaired caveolae internalization. Biochemical evaluation of caveolae-mediated uptake by ELISA showed a 68.4% inhibition by reference to control. We also showed that intersectin interaction with dynamin was important in regulating the fission and internalization of caveolae. Taken together, the results indicate the crucial role of intersectin in the mechanism of caveolae fission in endothelial cells.
PMCID: PMC284801  PMID: 12960435

Results 1-16 (16)