PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Hallux Valgus Surgery May Produce Early Improvements in Balance Control 
Background
Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance.
Methods
Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors.
Results
Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double- and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049).
Conclusions
This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted.
PMCID: PMC4815263  PMID: 24297985
2.  Fear of Falling Is Prevalent in Older Adults with Diabetes Mellitus But Is Unrelated to Level of Neuropathy 
Background
Patients with diabetic peripheral neuropathy (DPN) demonstrate gait alterations compared with their nonneuropathic counterparts, which may place them at increased risk for falling. However, it is uncertain whether patients with DPN also have a greater fear of falling.
Methods
A voluntary group of older adults with diabetes was asked to complete a validated fear of falling questionnaire (Falls Efficacy Scale International [FES-I]) and instructed to walk 20 m in their habitual shoes at their habitual speed. Spatiotemporal parameters of gait (eg, stride velocity and gait speed variability) were collected using a validated body-worn sensor technology. Balance during walking was also assessed using sacral motion in the mediolateral and anteroposterior directions. The level of DPN was quantified using vibration perception threshold from the great toe.
Results
Thirty-four diabetic patients (mean ± SD: age, 67.6 ± 9.2 years; body mass index, 30.9 ± 5.7; hemoglobin A1c, 7.9% ± 2.3%) with varying levels of neuropathy (mean ± SD vibration perception threshold, 34.6 ± 22.9 V) were recruited. Most participants (28 of 34, 82%) demonstrated moderate to high concern about falling based on their FES-I score. Age (r = 0.6), hemoglobin A1c level (r = 0.39), number of steps required to reach steady-state walking (ie, gait initiation) (r = 0.4), and duration of double support (r = 0.44) were each positively correlated with neuropathy severity (P < .05). Participants with a greater fear of falling also walked with slower stride velocities and shorter stride lengths (r = −0.3 for both, P < .05). However, no correlation was observed between level of DPN and the participant’s actual concern about falling.
Conclusions
Fear of falling is prevalent in older adults with diabetes mellitus but is unrelated to level of neuropathy.
PMCID: PMC4732269  PMID: 24297984
3.  A Novel Shear Reduction Insole Effect on the Thermal Response to Walking Stress, Balance, and Gait 
Shear stresses have been implicated in the formation of diabetes-related foot ulcers. The aim of this study was to evaluate the effect of a novel shear-reducing insole on the thermal response to walking, balance, and gait. Twenty-seven diabetes peripheral neuropathy patients were enrolled and asked to take 200 steps in both intervention and standard insoles. Thermal foot images of the feet were taken at baseline (1) following a 5-minute temperature acclimatization and (2) after walking. Testing order was randomized, and a 5-minute washout period was used between testing each insole condition. Sudomotor function was also assessed. Gait and balance were measured under single and dual task conditions using a validated body worn sensor system. The mean age was 65.1 years, height was 67.3 inches, weight was 218 pounds, and body mass index was 33.9, 48% were female, and 82% had type 2 diabetes. After walking in both insole conditions, foot temperatures increased significantly in standard insoles. The intervention insole significantly reduced forefoot and midfoot temperature increases (64.1%, P = .008; 48%, P = .046) compared to standard insoles. There were significant negative correlations with sudomotor function and baseline temperatures (r = .53-.57). The intervention demonstrated 10.4% less gait initiation double support time compared to standard insoles (P = .05). There were no differences in static balance measures. We found significantly lower forefoot and midfoot temperature increases following walking with shear-reducing insoles compared to standard insoles. We also found improvements in gait. These findings merit future study for the prevention of foot ulcer.
doi:10.1177/1932296814546528
PMCID: PMC4455476  PMID: 25107709
autonomic dysfunction; foot biomechanics; foot complications; foot; foot wear; orthotics; shear friction
4.  Frailty and Technology: A Systematic Review of Gait Analysis in Those with Frailty 
Gerontology  2013;60(1):79-89.
Background
New technologies for gait assessment areemerging and have provided new avenues for accurately measuring gait characteristics in home and clinic. However, potential meaningful clinical gait parameters beyond speed have received little attention in frailty research.
Objective
To study gait characteristics in different frailty status groups for identifying the most useful parameters and assessment protocols for frailty diagnosis.
Methods
We searched PubMed, Embase, PsycINFO, CINAHL, Web of Science, Cochrane Library, and Age Line. Articles were selected according to the following criteria: (1) population: individuals defined as frail, prefrail, or transitioning to frail, and (2) outcome measures: quantitative gait variables as obtained by biomechanical analysis. Effect sizes (d) were calculated for the ability of parameters to discriminate between different frailty status groups.
Results
Eleven publications met inclusion criteria. Frailty definitions, gait protocols and parameters were inconsistent, which made comparison of outcomes difficult. Effect sizes were calculated only for the three studies which compared at least two different frailty status groups. Gait speed shows the highest effect size to discriminate between frailty subgroups, in particular during habitual walking (d = 0.76–6.17). Gait variability also discriminates between different frailty status groups in particular during fast walking. Prominent parameters related to prefrailty are reduced cadence (d = 1.43) and increased step width variability (d = 0.64), whereas frailty (vs. prefrail status) is characterized by reduced step length during habitual walking (d = 1.32) and increased double support during fast walking (d = 0.78). Interestingly, one study suggested that dual-task walking speed can be used to predict prospective frailty development.
Conclusion
Gait characteristics in people with frailty are insufficiently analyzed in the literature and represent a major area for innovation. Despite the paucity of work, current results suggest that parameters beyond speed could be helpful in identifying different categories of frailty. Increased gait variability might reflect a multisystem reduction and may be useful in identifying frailty. In addition, a demanding task such as fast walking or adding a cognitive distractor might enhance the sensitivity and specificity of frailty risk prediction and classification, and is recommended for frailty assessment using gait analysis.
doi:10.1159/000354211
PMCID: PMC4017858  PMID: 23949441
Gait; Technology; Analysis; Assessment; Measurement; Frailty; Older adults
5.  Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults 
Background
Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training.
Methods
Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire.
Results
After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback.
Conclusions
Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the added value of the proposed sensor-based training paradigm compared to traditional balance training programs and commercial exergames.
Trial registration
http://www.clinicaltrials.govNCT02043834.
doi:10.1186/1743-0003-11-164
PMCID: PMC4290812  PMID: 25496052
Wearable sensors; Exercise; Exergame; Interactive; Balance; Postural control; Older adults; Fall risk
6.  Diabetic Peripheral Neuropathy and Gait: Does Footwear Modify This Association? 
Background
Gait-related fall risk is the leading cause of mortality among patients with diabetes, especially those older than 65 years. Deterioration in balance and loss of protective sensation in lower extremities contribute significantly to fall risk in patients with diabetic peripheral neuropathy (DPN). This study aimed to explore the impact of neuropathy and foot ulcer on gait.
Methods
We recruited 39 participants (age, 56.9 ± 8.2 years; body mass index, 29.6.3 ± 4.7 kg/m2), including 15 DPN patients without foot ulcers, 16 DPN patients with foot ulcers, and 8 healthy aged-matched controls. Patients with active foot ulcers wore an offloading device during gait examination, including removable cast walker.
Results
Results suggest that neuropathy alters gait mainly by increasing gait initiation, gait variability (coefficient of variation of gait velocity), and double support (DS) time, while reducing knee range of motion and center of mass sway (p < .05). Interestingly, the presence of foot ulcer does not impact gait velocity (p > .1) but enhances some of the gait parameters such as gait variability and DS time.
Conclusions
This study demonstrates that neuropathy deteriorates gait, but the presence of foot ulcers does not alter gait parameters further than neuropathy. In addition, patients with foot ulcers demonstrated a better gait compared with DPN patients without ulcers. We speculate that offloading footwear may be enhancing the somatosensory feedback from sensate skin, thereby positively affecting gait parameters. A study with a larger sample is required to explore the effect of prescribed footwear in the DPN population in order to validate the findings of this research study.
PMCID: PMC3876356  PMID: 24124939
diabetes; foot ulcer; gait; offloading; wearable sensors
7.  Improvements in gait characteristics after intensive resistance and functional training in people with dementia: a randomised controlled trial 
BMC Geriatrics  2014;14:73.
Background
Preventing and rehabilitating gait disorders in people with dementia during early disease stage is of high importance for staying independent and ambulating safely. However, the evidence gathered in randomized controlled trials (RCTs) on the effectiveness of exercise training for improving spatio-temporal gait parameters in people with dementia is scarce. The aim of the present study was to determine whether a specific, standardized training regimen can improve gait characteristics in people with dementia.
Methods
Sixty-one individuals (mean age: 81.9 years) with confirmed mild to moderate stage dementia took part in a 3-month double-blinded outpatient RCT. Subjects in the intervention group (IG) received supervised, progressive resistance and functional group training for 3 months (2 times per week for two hours) specifically developed for people with dementia. Subjects in the control group (CG) conducted a low-intensity motor placebo activity program. Gait characteristics were measured before and after the intervention period using a computerized gait analysis system (GAITRite®).
Results
Adherence to the intervention was excellent, averaging 91.9% in the IG and 94.4% in the CG. The exercise training significantly improved gait speed (P < 0.001), cadence (P = 0.002), stride length (P = 0.008), stride time (P = 0.001), and double support (P = 0.001) in the IG compared to the CG. Effect sizes were large for all gait parameters that improved significantly (Cohen’s d: 0.80-1.27). No improvements were found for step width (P = 0.999), step time variability (P = 0.425) and Walk-Ratio (P = 0.554). Interestingly, low baseline motor status, but not cognitive status, predicted positive training response (relative change in gait speed from baseline).
Conclusion
The intensive, dementia-adjusted training was feasible and improved clinically meaningful gait variables in people with dementia. The exercise program may represent a model for preventing and rehabilitating gait deficits in the target group. Further research is required for improving specific gait characteristics such as gait variability in people with dementia.
Trial registration
ISRCTN49243245
doi:10.1186/1471-2318-14-73
PMCID: PMC4062767  PMID: 24924703
8.  Virtualizing the Assessment: A Novel Pragmatic Paradigm to Evaluate Lower Extremity Joint Perception in Diabetes 
Gerontology  2012;58(5):463-471.
Background
Persons with diabetes have a higher risk of falls and fall related injuries. People with diabetes often develop peripheral neuropathy (DPN) as well as nerve damage throughout the body. In particular, reduced lower extremity proprioception due to DPN may cause a misjudgment of foot position and thus increase the risk of fall.
Objective
An innovative virtual obstacle crossing (VOC) paradigm using wearable sensors was developed in attempt to assess lower extremity position perception damage due to DPN.
Methods
Sixty-seven participants (Age: 55.4±8.9; BMI: 28.1±5.8) including diabetes with and without DPN as well as aged matched healthy controls were recruited. Severity of neuropathy was quantified using vibratory perception threshold (VPT) test. The ability of perception of lower extremity was quantified by measuring obstacle crossing success rate (OCSR), toe-obstacle clearance (TOC), and reaction time (TR) while crossing a series of virtual obstacles with heights at 10% and 20% of the subject’s leg length.
Results
No significant difference was found between groups for age and BMI. The data revealed that DPN subjects had a significantly lower OCSR compared to diabetes with no neuropathy and controls at obstacle size of 10% (p<0.05). DPN subjects also demonstrated longer TR compared to other groups and for both obstacle sizes. In addition TOC was reduced in neuropathy groups. Interestingly, a significant correlation between TR and VPT (r=0.5, p<10-5) was observed indicating delay in reaction by increasing neuropathy severity. The delay becomes more pronounced by increasing the size of obstacle. Using regression model suggests that the change in reaction time between obstacle sizes of 10% and 20% of leg size is the most sensitive predictors for neuropathy severity with an odds ratio of 2.70 (p=0.02).
Conclusion
The findings demonstrate proof of concept of virtual reality application as a promising method for objective assessment of neuropathy severity, however; a further study is warranted to establish a stronger relationship between the measured parameters and neuropathy.
doi:10.1159/000338095
PMCID: PMC3955209  PMID: 22572476
Virtual Reality; Diabetes Peripheral Neuropathy; Lower Extremity Joint Perception; Body Worn Sensors; Fall Prevention; Obstacle crossing
9.  Plantar Temperature Response to Walking in Diabetes with and without Acute Charcot: The Charcot Activity Response Test 
Journal of Aging Research  2012;2012:140968.
Objective. Asymmetric plantar temperature differences secondary to inflammation is a hallmark for the diagnosis and treatment response of Charcot foot syndrome. However, little attention has been given to temperature response to activity. We examined dynamic changes in plantar temperature (PT) as a function of graduated walking activity to quantify thermal responses during the first 200 steps. Methods. Fifteen individuals with Acute Charcot neuroarthropathy (CN) and 17 non-CN participants with type 2 diabetes and peripheral neuropathy were recruited. All participants walked for two predefined paths of 50 and 150 steps. A thermal image was acquired at baseline after acclimatization and immediately after each walking trial. The PT response as a function of number of steps was examined using a validated wearable sensor technology. The hot spot temperature was identified by the 95th percentile of measured temperature at each anatomical region (hind/mid/forefoot). Results. During initial activity, the PT was reduced in all participants, but the temperature drop for the nonaffected foot was 1.9 times greater than the affected side in CN group (P = 0.04). Interestingly, the PT in CN was sharply increased after 50 steps for both feet, while no difference was observed in non-CN between 50 and 200 steps. Conclusions. The variability in thermal response to the graduated walking activity between Charcot and non-Charcot feet warrants future investigation to provide further insight into the correlation between thermal response and ulcer/Charcot development. This stress test may be helpful to differentiate CN and its response to treatment earlier in its course.
doi:10.1155/2012/140968
PMCID: PMC3413979  PMID: 22900177

Results 1-9 (9)