Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  Liquid Silicone to Mitigate Plantar Pedal Pressure: A Literature Review 
Disruption of the body’s plantar fat pad can occur as a result of one of three mechanisms: simple fat pad atrophy associated with age-related degeneration, steroid use, or collagen vascular disease. Actual or relative displacement in to the underlying osseous prominences may be seen in association with structural deformity of the foot. Disease states such as diabetes may alter the normal structural integrity of soft tissues through nonenzymatic glycation leading to increased stiffness and thus reduced attenuating capacity. Fat pad atrophy, regardless of the cause, is often associated with substantial emotional, physical, productivity, and financial losses. In situations where the patient is sensate, the resultant skin on bone situation is extremely painful, especially when walking.
PMCID: PMC2909515  PMID: 20663447
atrophy; augmentation; pressure; silicone
3.  The Visualization of Biofilms in Chronic Diabetic Foot Wounds Using Routine Diagnostic Microscopy Methods 
Journal of Diabetes Research  2014;2014:153586.
Diabetic foot wounds are commonly colonised by taxonomically diverse microbial communities and may additionally be infected with specific pathogens. Since biofilms are demonstrably less susceptible to antimicrobial agents than are planktonic bacteria, and may be present in chronic wounds, there is increasing interest in their aetiological role. In the current investigation, the presence of structured microbial assemblages in chronic diabetic foot wounds is demonstrated using several visualization methods. Debridement samples, collected from the foot wounds of diabetic patients, were histologically sectioned and examined using bright-field, fluorescence, and environmental scanning electron microscopy and assessed by quantitative differential viable counting. All samples (n = 26) harboured bioburdens in excess of 5 log10 CFU/g. Microcolonies were identified in 4/4 samples by all three microscopy methods, although bright-field and fluorescence microscopy were more effective at highlighting putative biofilm morphology than ESEM. Results in this pilot study indicate that bacterial microcolonies and putative biofilm matrix can be visualized in chronic wounds using florescence microscopy and ESEM, but also using the simple Gram stain.
PMCID: PMC4009286  PMID: 24839608
4.  Molecular and Culture-Based Assessment of the Microbial Diversity of Diabetic Chronic Foot Wounds and Contralateral Skin Sites 
Journal of Clinical Microbiology  2012;50(7):2263-2271.
Wound debridement samples and contralateral (healthy) skin swabs acquired from 26 patients attending a specialist foot clinic were analyzed by differential isolation and eubacterium-specific PCR-denaturing gradient gel electrophoresis (DGGE) in conjunction with DNA sequencing. Thirteen of 26 wounds harbored pathogens according to culture analyses, with Staphylococcus aureus being the most common (13/13). Candida (1/13), pseudomonas (1/13), and streptococcus (7/13) were less prevalent. Contralateral skin was associated with comparatively low densities of bacteria, and overt pathogens were not detected. According to DGGE analyses, all wounds contained significantly greater eubacterial diversity than contralateral skin (P < 0.05), although no significant difference in total eubacterial diversity was detected between wounds from which known pathogens had been isolated and those that were putatively uninfected. DGGE amplicons with homology to Staphylococcus sp. (8/13) and S. aureus (2/13) were detected in putatively infected wound samples, while Staphylococcus sp. amplicons were detected in 11/13 noninfected wounds; S. aureus was not detected in these samples. While a majority of skin-derived DGGE consortial fingerprints could be differentiated from wound profiles through principal component analysis (PCA), a large minority could not. Furthermore, wounds from which pathogens had been isolated could not be distinguished from putatively uninfected wounds on this basis. In conclusion, while chronic wounds generally harbored greater eubacterial diversity than healthy skin, the isolation of known pathogens was not associated with qualitatively distinct consortial profiles or otherwise altered diversity. The data generated support the utility of both culture and DGGE for the microbial characterization of chronic wounds.
PMCID: PMC3405613  PMID: 22553231
5.  Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination 
The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound.
Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37°C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room.
There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy.
The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.
PMCID: PMC2694772  PMID: 19426486

Results 1-5 (5)