Search tips
Search criteria

Results 1-25 (54)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
PMCID: PMC3657475  PMID: 23263863
2.  IL-17 induces expression of vascular cell adhesion molecule through signaling pathway of NF-κB, but not Akt1 and TAK1 in vascular smooth muscle cells 
Interleukin 17 (IL-17) plays an important role in several autoimmune diseases. IL-17 can induce the expression of vascular cell adhesion molecule (VCAM-1) in aortic vascular smooth muscle cells (SMCs), which is important for the development of atherosclerosis. However, the signaling pathway of IL-17-induced VCAM-1 expression remains unclear. In this study, we reported that IL-17 induced expression of VCAM-1 in SMCs is dependent on NF-κB, but independent of Akt1 and TAK1. This is because knocking down Akt1 or TAK1 by siRNA did not reduce IL-17-induced activation of NF-κB and expression of VCAM-1, whereas knocking down NF-κB by siRNA markedly inhibited IL-17-mediated upregulation of VCAM-1 expression. In addition, IL-17-induced expression of VCAM-1 is partially dependent on activation of ERK1/2. Therefore, these signaling pathways of IL-17-mediated upregulation of VCAM-1 expression might be therapeutic targets for treatment of IL-17-mediated inflammation.
PMCID: PMC3683581  PMID: 23421430
IL-17; NF-κB; vascular smooth muscle cells; adhesion molecule
3.  Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes 
Scientific Reports  2014;4:4465.
Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.
PMCID: PMC3964518  PMID: 24663054
4.  20(S)-Protopanaxadiol-aglycone Downregulation of the Full-length and Splice Variants of Androgen Receptor 
As a public health problem, prostate cancer engenders huge economic and life-quality burden. Developing effective chemopreventive regimens to alleviate the burden remains a major challenge. Androgen signaling is vital to the development and progression of prostate cancer. Targeting androgen signaling via blocking the production of the potent ligand dihydrotestosterone has been shown to decrease prostate cancer incidence. However, the potential of increasing the incidence of high-grade prostate cancers has been a concern. Mechanisms of disease progression after the intervention may include increased expression of androgen receptor (AR) in prostate tissue and expression of the constitutively-active AR splice variants (AR-Vs) lacking the ligand-binding domain. Thus, novel agents targeting the receptor, preferentially both the full-length and AR-Vs, are urgently needed. In the present study, we show that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) effectively downregulates the expression and activity of both the full-length AR and AR-Vs. The effects of PPD on AR and AR-Vs are manifested by an immediate drop in proteins followed by a reduction in transcripts, attributed to PPD induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further show that although PPD inhibits the growth as well as AR expression and activity in LNCaP xenograft tumors, the morphology and AR expression in normal prostates are not affected. This study is the first to show that PPD suppresses androgen signaling through downregulating both the full-length AR and AR-Vs, and provides strong rationale for further developing PPD as a promising agent for the prevention and/or treatment of prostate cancer.
PMCID: PMC3509250  PMID: 22907191
20(S)-protopanaxadiol-aglycone; androgen receptor; prostate cancer
5.  AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression 
Diagnostic Pathology  2014;9:42.
Aldo-keto reductase family 1 member C3 (AKR1C3) is a key steroidogenic enzyme that is overexpressed in prostate cancer (PCa) and is associated with the development of castration-resistant prostate cancer (CRPC). The aim of this study was to investigate the correlation between the expression level of AKR1C3 and the progression of PCa.
Sixty human prostate needle biopsy tissue specimens and ten LNCaP xenografts from intact or castrated male mice were included in the study. The relationship between the level of AKR1C3 expression by immunohistochemistry and evaluation factors for PCa progression, including prostate-specific antigen (PSA), Gleason score (GS) and age, were analyzed.
Low immunoreactivity of AKR1C3 was detected in normal prostate epithelium, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN). Positive staining was gradually increased with an elevated GS in PCa epithelium and LNCaP xenografts in mice after castration. The Spearman’s r values (rs) of AKR1C3 to GS and PSA levels were 0.396 (P = 0.025) and -0.377 (P = 0.036), respectively, in PCa biopsies. The rs of AKR1C3 to age was 0.76 (P = 0.011). No statistically significant difference was found with other variables.
Our study suggests that the level of AKR.
1C3 expression is positively correlated with an elevated GS, indicating that AKR1C3 can serve as a promising biomarker for the progression of PCa.
Virtual slides
The virtual slide(s) for this article can be found here:
PMCID: PMC3939640  PMID: 24571686
AKR1C3; Prostate cancer; Gleason score; PSA; Biomarker
6.  Induction therapy with bortezomib and dexamethasone followed by autologous stem cell transplantation versus autologous stem cell transplantation alone in the treatment of renal AL amyloidosis: a randomized controlled trial 
BMC Medicine  2014;12:2.
Although the use of bortezomib alone and in combination with steroids has shown efficacy in AL amyloidosis, its role in combination with high-dose melphalan and autologous stem cell transplantation (HDM/SCT) is unknown. In this study, we evaluated bortezomib in combination with dexamethasone (BD) for induction chemotherapy prior to HDM/SCT.
This was a single-center, prospective, randomized controlled trial comparing induction therapy consisting of two BD cycles followed by HDM/SCT (BD + HDM/SCT) with HDM/SCT alone in the treatment of patients with newly diagnosed AL amyloidosis. The hematological and organ responses of the patients were assessed every three months post HDM/SCT.
Fifty-six patients newly diagnosed with renal (100%), cardiac (57.1%), liver (7.1%), or nervous system (8.9%) AL amyloidosis were enrolled in this study; 28 patients were assigned to each arm. Two patients died within 100 days of HDM/SCT (3.6% treatment-related mortality). The overall hematologic response rates in the BD + HDM/SCT arm and HDM/SCT arm at three, six and twelve months were 78.5% versus 50%, 82.1% versus 53.5% and 85.7% versus 53.5%, respectively. In the BD + HDM/SCT arm, 15 (53.5%) patients achieved a hematologic response after BD and before HDM/SCT. An intention-to-treat analysis revealed a higher rate of complete remission in the BD + HDM/SCT arm at both 12 and 24 months (67.9% and 70%, respectively) than with the HDM/SCT-only therapy (35.7% and 35%, respectively, P = 0.03). After a median follow-up of 28 months, the survival rates at 24 months post-treatment start were 95.0% in the BD + HDM/SCT group and 69.4% in the HDM/SCT alone group (P = 0.03).
Our preliminary data suggest that the outcome of treating AL amyloidosis with BD induction and HDM/SCT was superior to the outcome of the HDM/SCT treatment alone.
Trial registration
This trial has been registered at with the number NCT01998503.
PMCID: PMC3895846  PMID: 24386911
AL amyloidosis; Bortezomib; Autologous stem cell transplantation
7.  Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide 
Scientific Reports  2013;3:3534.
Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.
PMCID: PMC3866611  PMID: 24346481
8.  Methylselenol prodrug enhances MDV3100 efficacy for treatment of castration-resistant prostate cancer 
The next-generation antiandrogen MDV3100 prolongs overall survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patient responses are variable, and survival benefit remains relatively small. Developing effective modality to improve MDV3100 efficacy is urgently needed. Recent evidence suggests that constitutively active androgen receptor splice variants (AR-Vs) drive resistance to MDV3100. In our study, we show that methylselenol prodrug downregulates the expression and activity of both the full-length AR (AR-FL) and AR-Vs. The downregulation is independent of androgen and could be attributable to repressed transcription of the AR gene. Cotreatment with methylselenol prodrug and MDV3100 suppresses AR signaling more dramatically than either agent alone, and synergistically inhibits the growth of CRPC cells in vitro. The combinatorial efficacy is observed in not only AR-V-expressing cells but also cells expressing predominantly AR-FL, likely owing to the ability of the two drugs to block the AR signaling cascade at distinct steps. Ectopic expression of AR-FL or AR-V7 attenuates the combinatorial efficacy, indicating that downregulating AR-FL and AR-V7 is importantly involved in mediating the combinatorial efficacy. Significantly, methylselenol prodrug also downregulates AR-FL and AR-Vs in vivo and substantially improves the antitumor efficacy of MDV3100. These findings support a potential combination therapy for improving MDV3100 efficacy, and provide a rationale for evaluating the clinical application of combining methylselenol prodrug with MDV3100 for the treatment of CRPC.
PMCID: PMC3750963  PMID: 23575870
methylseleninic acid; methylselenocysteine; MDV3100; androgen receptor; castration-resistant prostate cancer
9.  Chronic Hypoxia during Gestation Causes Epigenetic Repression of ERα Gene in Ovine Uterine Arteries via Heightened Promoter Methylation 
Hypertension  2012;60(3):697-704.
Estrogen receptor α (ERα) plays a key role in the adaptation of increased uterine blood flow in pregnancy. Chronic hypoxia is a common stress to maternal cardiovascular homeostasis and causes increased risk of preeclampsia. Studies in pregnant sheep demonstrated that hypoxia during gestation downregulated ERα gene expression in uterine arteries. The present study tested the hypothesis that hypoxia causes epigenetic repression of the ERα gene in uterine arteries via heightened promoter methylation. Ovine ERα promoter of 2035 bp spanning from −2000 to +35 of the transcription start site was cloned. No estrogen or HIF response elements were found at the promoter. Two transcription factor binding sites USF-15 and Sp1-520 containing CpG dinucleotides were identified, which had significant effects on the promoter activity. The USF element binds transcription factors USF1 and USF2, and the Sp1 element binds Sp1, as well as ERα through Sp1. Deletion of the Sp1 site abrogated 17β-estradiol-induced increase in the promoter activity. In normoxic control sheep, CpG methylation at the Sp1, but not USF, site was significantly decreased in uterine arteries of pregnant, as compared with nonpregnant animals. In pregnant sheep exposed to long-term high altitude hypoxia, CpG methylation at both Sp1 and USF sites in uterine arteries was significantly increased. Methylation inhibited transcription factor binding and the promoter activity. The results provide evidence of hypoxia causing heightened promoter methylation and resultant ERα gene repression in uterine arteries, and suggest new insights of molecular mechanisms linking gestational hypoxia to aberrant uteroplacental circulation and increased risk of preeclampsia.
PMCID: PMC3421058  PMID: 22777938
Hypoxia; estrogen receptor; methylation; epigenetic modulation; uterine artery
10.  Interferon and Ribavirin Combination Treatment Synergistically Inhibit HCV Internal Ribosome Entry Site Mediated Translation at the Level of Polyribosome Formation 
PLoS ONE  2013;8(8):e72791.
Although chronic hepatitis C virus (HCV) infection has been treated with the combination of interferon alpha (IFN-α) and ribavirin (RBV) for over a decade, the mechanism of antiviral synergy is not well understood. We aimed to determine the synergistic antiviral mechanisms of IFN-α and RBV combination treatment using HCV cell culture.
The antiviral efficacy of IFN-α, RBV alone and in combination was quantitatively measured using HCV infected and replicon cell culture. Direct antiviral activity of these two drugs at the level of HCV internal ribosome entry site (IRES) mediated translation in Huh-7 cell culture was investigated. The synergistic antiviral effect of IFN-α and RBV combination treatment was verified using both the CalcuSyn Software and MacSynergy Software.
RBV combination with IFN-α efficiently inhibits HCV replication cell culture. Our results demonstrate that IFN-α, interferon lambda (IFN-λ) and RBV each inhibit the expression of HCV IRES-GFP and that they have a minimal effect on the expression of GFP in which the translation is not IRES dependent. The combination treatments of RBV along with IFN-α or IFN-λ were highly synergistic with combination indexes <1. We show that IFN-α treatment induce levels of PKR and eIF2α phosphorylation that prevented ribosome loading of the HCV IRES-GFP mRNA. Silencing of PKR expression in Huh-7 cells prevented the inhibitory effect of IFN-α on HCV IRES-GFP expression. RBV also blocked polyribosome loading of HCV-IRES mRNA through the inhibition of cellular IMPDH activity, and induced PKR and eIF2α phosphorylation. Knockdown of PKR or IMPDH prevented RBV induced HCV IRES-GFP translation.
We demonstrated both IFN-α and RBV inhibit HCV IRES through prevention of polyribosome formation. The combination of IFN-α and RBV treatment synergistically inhibits HCV IRES translation via using two different mechanisms involving PKR activation and depletion of intracellular guanosine pool through inhibition of IMPDH.
PMCID: PMC3751885  PMID: 24009705
11.  The missense variation landscape of FTO, MC4R and TMEM18 in obese children of African ancestry 
Obesity (Silver Spring, Md.)  2013;21(1):159-163.
Common variation at the loci harboring FTO, MC4R and TMEM18 is consistently reported as being statistically the most strongly associated with obesity. We investigated if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children. We sequenced the exons of FTO, MC4R and TMEM18 in an initial subset of our cohort i.e. 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S and I251L) and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R(Fisher's Exact P = 0.0001). In summary, moderately rare missense variants within the FTO, MC4R and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
PMCID: PMC3605748  PMID: 23505181
Obesity; Pediatrics; Genomics
12.  Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells 
Studies have indicated that the immune system plays a pivotal role in hepatitis. Substance P (SP) has been shown to modulate the immune response. In order to investigate the role of SP in liver injury and to determine whether it leads to pro-inflammatory signaling, we established a mouse model of hepatic injury induced by concanavalin A (ConA). We also exposed mouse Kupffer cells (KCs) to SP in vitro. Cytokine and SP levels in liver homogenates were detected using enzyme-linked immunosorbent assay (ELISA) and the protective effects of L-703,606 were evaluated through serological and histological assessments. Neurokinin-1 receptor (NK-1R) expression was evaluated by immunofluorescence and quantitative polymerase chain reaction (PCR). The levels of SP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly increased in the ConA-treated mice and the levels of ALT and AST were markedly reduced by L-703,606-pretreatment. Liver injury was significantly reduced by treatment with L-703,606. The mouse KCs expressed NK-1R and SP increased NK-1R mRNA expression. Furthermore, NK-1R blockade eliminated the effect of SP on NK-1R mRNA expression. The cytokine levels exhibited a substantial increase in the SP-pretreated KCs compared with the KCs that were cultured in control medium. The inter-leukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the L-703,606-pretreated KCs were significantly lower compared with those in the SP-pretreated KCs. Our study suggests that neurogenic inflammation induced by SP plays an important role in hepatitis. Mouse KCs express NK-1R and SP increases NK-1R mRNA expression. SP enhances IL-6 and TNF-α secretion and an NK-1R antagonist inhibits this secretion.
PMCID: PMC3786810  PMID: 24137208
concanavalin A; liver injury; substance P; neurokinin 1 receptor antagonist; neurogenic inflammation
13.  Treatment of diabetic nephropathy with Tripterygium wilfordii Hook F extract: a prospective, randomized, controlled clinical trial 
Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Although angiotensin II receptor blockers (ARBs) can be used to attenuate proteinuria in DN patients, their efficacy remains limited. This clinical trial aimed to evaluate the efficacy of Tripterygium wilfordii Hook F (TwHF) extract in the treatment of type 2 diabetes mellitus (DM)-induced nephropathy.
A total of 65 DN patients with proteinuria levels ≥ 2.5 g/24 h and serum creatinine levels < 3 mg/dl were enrolled in this six-month, prospective, randomized, controlled study. The patients were randomized into treatment groups that received either 120 mg of TwHF extract per day for three months, followed by 60 mg per day for three more months, or 160 mg of valsartan daily for six months. The urinary protein and estimated glomerular filtration (eGFR) level were measured at one, three, and six months after the commencement of treatment. The primary measure of treatment efficacy was a reduction in the 24-h urine protein level between baseline and the end of the study, and the secondary measure of treatment efficacy was a reduction in the eGFR value.
At the end of the treatment period, the mean urine protein level in the TwHF group was dramatically decreased (4.99 ± 2.25 g/24 h vs 2.99 ± 1.81 g/24 h, p < 0.01), with decreases at one, three, and six months of 32.9%, 38.8%, and 34.3%, respectively. In contrast, the proteinuria in the valsartan group was not significantly attenuated, and the decreases in urine protein levels at treatment months one, three, and six were 1.05%, 10.1%, and -11.7%, respectively. The mean decrease in eGFR in the valsartan group was greater than that in the TwHF group (26.4% vs. 13.7%, respectively; p =0.067).
TwHF extract can reduce the urine protein level of DN patients and represents a novel, potentially effective, and safe drug for the treatment of DN patients with proteinuria.
Trial registration NCT00518362
PMCID: PMC3670993  PMID: 23725518
Type 2 diabetes mellitus; Diabetic nephropathy; Proteinuria; Tripterygium wilfordii Hook F (TwHF); Angiotensin II receptor blocker (ARB)
14.  Comparison of optic nerve morphology in eyes with glaucoma and eyes with non-arteritic anterior ischemic optic neuropathy by Fourier domain optical coherence tomography 
The aim of this study was to compare the optic nerve head (ONH) and peripapillary retinal nerve fiber layer (RNFL) thickness in eyes with glaucoma and non-arteritic anterior ischemic neuropathy (NAION) by Fourier domain optical coherence tomography (FDOCT), and to evaluate the diagnostic capability of FDOCT in glaucoma and NAION. This study included 26 eyes with glaucoma (36.6%), 15 eyes with NAION (21.1%) and 30 eyes of normal subjects (42.3%). Those with the following conditions were excluded; a visual field defect greater than one hemifield, spherical equivalent (SE) more than ±6 D, or the onset of NAION within 6 months. FDOCT was used to analyze the characteristics of ONH and RNFL thickness. Among the three groups of subjects, glaucomatous eyes had the largest cup area and cup volume, and the smallest rim area, rim volume and disc volume (P<0.05). NAION eyes had the smallest cup area and cup volume (P<0.05), but their rim area, rim volume and disc volume were comparable to those of control eyes (P>0.05). The cup-to-disc (C/D) ratio was increased in glaucomatous eyes but reduced in NAION eyes compared with control eyes. Glaucomatous eyes had the greatest loss of RNFL thickness in the temporal upper (TU), superior temporal (ST) and temporal lower (TL) regions (P<0.05), whereas NAION eyes had the smallest RNFL thickness in the superior nasal (SN) and nasal upper (NU) regions (P<0.05). The areas under the receiver operator characteristic curve (AROCs) of the temporal, superior and inferior RNFL in glaucomatous eyes were greater compared with that of the disc area (P<0.05). In addition, the AROCs of the temporal, superior and inferior RNFL were higher compared with that of nasal RNFL (P<0.05). The AROCs of all parameters for NAION were not significantly different, with the exception of superior, nasal superior and inferior temporal RNFL (P<0.05). In conclusion, FDOCT is able to detect quantitative differences in the optic disc morphology and RNFL thickness between glaucomatous and NAION eyes. These differences may provide new insights into the clinical characteristics and diagnosis of the two diseases.
PMCID: PMC3735902  PMID: 23935759
optic disc; retinal nerve fiber layer; glaucoma; ischemic optic neuropathy; optic coherence tomography
15.  Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans 
Neuroblastoma (NBL) is an often-fatal pediatric cancer more frequent in European-American than African-American children. African-American children, however, are at higher risk for the more severe form of NBL, and have worse overall survival than European-American children. Genome wide association studies (GWAS) have identified several SNPs associated to NBL in children of European descent. Knowledge of their association to NBL in African-American children is still lacking.
We genotyped and imputed SNPs located in three gene regions reported to be associated to NBL in children of European descent, and tested them for association in 390 African-American NBL patients compared to 2500 healthy, ethnically matched controls.
SNPs in the BARD1 gene region show a similar pattern of association to NBL in African-American and European-American children. The more restricted extent of linkage disequilibrium in the African-American population suggests a smaller candidate region for the putative causal variants than previously reported. Limited association was observed at the other two gene regions tested, including LMO1 in 11p15 and FLJ22536 in 6p22.
Common BARD1 SNPs affect risk of NBL in African-Americans. The role of other SNPs associated to NBL in children of European descent could not be confirmed, possibly due to different patterns of linkage disequilibrium or limited statistical power to detect association to variants with small effect on disease risk. Extension of GWAS to populations of African descent is important to confirm their results and validity beyond the European populations, and can help to refine the location of the putative causal variants.
PMCID: PMC3319325  PMID: 22328350
Neuroblastoma; BARD1; African-Americans; SNPs; genetic association
16.  Maternal Cocaine Administration Causes an Epigenetic Modification of Protein Kinase Cε Gene Expression in Fetal Rat Heart 
Molecular pharmacology  2007;71(5):1319-1328.
Protein kinase Cε (PKCε) plays a pivotal role in cardioprotection during cardiac ischemia and reperfusion injury. Recent studies demonstrated that prenatal cocaine exposure caused a decrease in PKCε expression and increased heart susceptibility to ischemic injury in adult offspring, suggesting an in utero programming of PKCε gene expression pattern in the heart. The present investigation aimed to elucidate whether an epigenetic mechanism, DNA methylation, accounts for cocaine-mediated repression of the PKCε gene in the heart. Pregnant rats were administered either saline or cocaine intraperitoneally (15 mg/kg) twice daily from days 15 to 20 of gestational age, and term fetal hearts were studied. Cocaine treatment significantly decreased PKCε mRNA and protein levels in the heart. CpG dinucleotides found in cAMP response element-binding protein (CREB), CREB/c-Jun1, and CREB/c-Jun2 binding sites at the proximal promoter region of the PKCε gene were densely methylated and were not affected by cocaine. In contrast, methylation of CpGs in the activator protein 1 (AP-1) binding sites was low but was significantly increased by cocaine. Reporter gene assays showed that the AP-1 binding site played a strong stimulatory role of PKCε gene transcription. Methylation of the AP-1 binding sites significantly decreased AP-1 binding to the PKCε promoter. Supershift analyses implicated c-Jun homodimers binding to the AP-1 binding sites. Cocaine did not affect nuclear c-Jun levels or the binding of c-Jun to the unmethylated AP-1 binding sites. The results indicate a role for DNA methylation in cocaine-mediated PKCε gene repression in the developing heart and suggest an epigenetic mechanism affecting this gene linked with vulnerability of ischemic injury in the heart of adult offspring.
PMCID: PMC3570188  PMID: 17202284
17.  Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley 
PLoS ONE  2013;8(1):e55431.
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
PMCID: PMC3561194  PMID: 23383190
18.  Differential Functions of C- and N-Terminal Hepatitis B x Protein in Liver Cells Treated with Doxorubicin in Normoxic or Hypoxic Condition 
PLoS ONE  2012;7(11):e50118.
Hepatitis viral B x protein (HBx), a hepatocarcinogen, is frequently mutated. Hypoxia influences the growth of HCC and also the sensitivity of tumor cells to treatments. We aimed to test the role of HBx and acute hypoxia in the efficacy of chemotherapy. In this study, we established 4 Chang liver cell lines with the full-length HBx (HBx), the first 50 amino acids of N-terminal HBx (HBx/50), the last 104 amino acids of C-terminal HBx (HBx/51) and empty vector (CL), respectively. MTT and TNUEL assays were used to assess cell viability and apoptosis respectively. Western blot was used to determine the expression of relevant proteins. Results showed that among 4 cell lines, doxorubicin was most effective in decreasing the viability and enhancing apoptosis in HBx/51 cells, while HBx/50 cells were most resistant to the treatment. Cells in hypoxia were more susceptible to doxorubicin than cells in normoxia. Hypoxia facilitated the Bid cleavage especially in HBx/51 cells via phosphorylating p38 MAPK. p38 MAPK inhibitor significantly reduced the tBid level and increased cell viability. In conclusion, N-terminal HBx and C-terminal HBx function differentially in their ability to regulate cell growth, with the former being promotive but the latter being inhibitory. The acute hypoxia may overcome the HBx-induced resistance and facilitate the chemotherapy.
PMCID: PMC3510201  PMID: 23209654
19.  Berberine Suppresses Androgen Receptor Signaling in Prostate Cancer 
Molecular cancer therapeutics  2011;10(8):1346-1356.
The androgen receptor (AR) is critical in the normal development and function of the prostate, as well as in prostate carcinogenesis. Androgen deprivation therapy is the mainstay in the treatment of advanced prostate cancer, however, after an initial response, the disease inevitably progresses to castration-resistant prostate cancer (CRPC). Recent evidence suggests that continued AR activation, sometimes in a ligand-independent manner, is commonly associated with the development of CRPC. Thus, novel agents targeting the AR are urgently needed as a strategic step in developing new therapies for this disease state. In this study, we investigated the effect of berberine on AR signaling in prostate cancer. We report that berberine decreased the transcriptional activity of AR. Berberine did not affect AR mRNA expression, but induced AR protein degradation. Several ligand-binding domain truncated AR splice variants have been identified and these variants are believed to promote the development of CRPC in patients. Interestingly, we found that these variants were more susceptible to berberine-induced degradation than the full-length AR. Furthermore, the growth of LNCaP xenografts in nude mice was inhibited by berberine and AR expression was reduced in the tumors, whereas the morphology and AR expression in normal prostates were not affected. This report is the first to show that berberine suppresses AR signaling and suggests that berberine or its derivatives is a promising agent for the prevention and/or treatment of prostate cancer.
PMCID: PMC3154574  PMID: 21613449
berberine; androgen receptor; prostate cancer; xenograft
20.  The antiandrogenic effect of finasteride against a mutant androgen receptor 
Cancer Biology & Therapy  2011;11(10):902-909.
Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy.
PMCID: PMC3116931  PMID: 21386657
finasteride; androgen receptor; prostate cancer; antagonistic effect; peroxiredoxin-1; DHT; mutant AR
21.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene 
Nature  2010;469(7329):216-220.
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths1,2. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
PMCID: PMC3320515  PMID: 21124317
22.  (+)-Rutamarin as a Dual Inducer of Both GLUT4 Translocation and Expression Efficiently Ameliorates Glucose Homeostasis in Insulin-Resistant Mice 
PLoS ONE  2012;7(2):e31811.
Glucose transporter 4 (GLUT4) is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM). Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+)-Rutamarin (Rut) functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO) mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B) inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα), Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.
PMCID: PMC3288053  PMID: 22384078
23.  Methylseleninic Acid Enhances Paclitaxel Efficacy for the Treatment of Triple-Negative Breast Cancer 
PLoS ONE  2012;7(2):e31539.
A major challenge in breast cancer therapy is the lack of an effective therapeutic option for a particularly aggressive subtype of breast cancer, triple-negative breast cancer. Here we provide the first preclinical evidence that a second-generation selenium compound, methylseleninic acid, significantly enhances the anticancer efficacy of paclitaxel in triple-negative breast cancer. Through combination-index value calculation, we demonstrated that methylseleninic acid synergistically enhanced the growth inhibitory effect of paclitaxel in triple-negative breast cancer cells. The synergism was attributable to more pronounced induction of caspase-mediated apoptosis, arrest of cell cycle progression at the G2/M checkpoint, and inhibition of cell proliferation. Treatment of SCID mice bearing MDA-MB-231 triple-negative breast cancer xenografts for four weeks with methylseleninic acid (4.5 mg/kg/day, orally) and paclitaxel (10 mg/kg/week, through intraperitoneal injection) resulted in a more pronounced inhibition of tumor growth compared with either agent alone. The attenuated tumor growth correlated with a decrease in tumor cell proliferation and an induction of apoptosis. The in vivo study also indicated the safety of using methylseleninic acid in the combination regime. Our findings thus provide strong justification for the further development of methylseleninic acid and paclitaxel combination therapy for the treatment of triple-negative breast cancer.
PMCID: PMC3279411  PMID: 22348099
24.  Complex Expression of the Cellulolytic Transcriptome of Saccharophagus degradans † ▿  
Applied and Environmental Microbiology  2011;77(16):5591-5596.
Saccharophagus degradans is an aerobic marine bacterium that can degrade cellulose by the induced expression of an unusual cellulolytic system composed of multiple endoglucanases and glucosidases. To understand the regulation of the cellulolytic system, transcript levels for the genes predicted to contribute to the cellulolytic system were monitored by quantitative real-time PCR (qRT-PCR) during the transition to growth on cellulose. Four glucanases of the cellulolytic system exhibited basal expression during growth on glucose. All but one of the predicted cellulolytic system genes were induced strongly during growth on Avicel, with three patterns of expression observed. One group showed increased expression (up to 6-fold) within 4 h of the nutritional shift, with the relative expression remaining constant over the next 22 h. A second group of genes was strongly induced between 4 and 10 h after nutritional transfer, with relative expression declining thereafter. The third group of genes was slowly induced and was expressed maximally after 24 h. Cellodextrins and cellobiose, products of the predicted basally expressed endoglucanases, stimulated expression of representative cellulase genes. A model is proposed by which the activity of basally expressed endoglucanases releases cellodextrins from Avicel that are then perceived and transduced to initiate transcription of each of the regulated cellulolytic system genes forming an expression pattern.
PMCID: PMC3165252  PMID: 21705539
25.  Common variants at five new loci associated with early-onset inflammatory bowel disease 
Nature Genetics  2009;41(12):1335-1340.
The inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD1. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 × 10−9), 22q12 (rs2412973, P = 1.55 × 10−9), 10q22 (rs1250550, P = 5.63 × 10−9), 2q37 (rs4676410, P = 3.64 × 10−8) and 19q13.11 (rs10500264, P = 4.26 × 10−10). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohn’s disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.
PMCID: PMC3267927  PMID: 19915574

Results 1-25 (54)