PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (109)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Genome-wide linkage analyses of non-Hispanic White families identifies novel loci for familial late-onset Alzheimer's disease 
INTRODUCTION
Few high penetrance variants that explain risk in Late-onset Alzheimer's disease (LOAD) families have been found.
METHODS
We performed genomewide linkage and identity-by-descent (IBD) analyses on 41 non-Hispanic Caucasian families exhibiting likely dominant inheritance of LOAD, and having no mutations at known familial AD loci and a low burden of APOE ε4 alleles.
RESULTS
Two-point parametric linkage analysis identified 14 significantly linked regions, including three novel linkage regions for LOAD (5q32, 11q12.2-11q14.1 and 14q13.3), one of which replicates a genomewide association LOAD locus, the MS4A6A-MS4A4E gene cluster at 11q12.2. Five of the 14 regions (3q25.31, 4q34.1, 8q22.3, 11q12.2-14.1 and 19q13.41) are supported by strong multipoint results (LOD*≥1.5). Non-parametric multipoint analyses produced an additional significant locus at 14q32.2 (LOD*=4.18). The 1-LOD confidence interval for this region contains one gene, C14orf177, and the miRNA Mir_320, while IBD analyses implicates an additional gene BCL11B, a regulator of brain-derived neurotrophic signaling, a pathway associated with pathogenesis of several neurodegenerative diseases.
DISCUSSION
Examination of these regions following whole genome sequencing may identify highly penetrant variants for familial LOAD.
doi:10.1016/j.jalz.2015.05.020
PMCID: PMC4717829  PMID: 26365416
Non-Hispanic White; Late Onset Alzheimer's Disease; linkage; high penetrance; identity-by-descent; familial; genetics
2.  Linkage analyses in Caribbean Hispanic families identifies novel loci associated with familial late-onset Alzheimer’s disease 
INTRODUCTION
We performed linkage analyses in Caribbean Hispanic families with multiple late-onset Alzheimer’s disease (LOAD) cases to identify regions that may contain disease causative variants.
METHODS
We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of the linked regions was repeated using the entire sample of 282 families. Validated chromosomal regions were analyzed using joint linkage and association.
RESULTS
We identified 26 regions linked to LOAD (HLOD ≥ 3.6). We validated thirteen of the regions (HLOD ≥ 2.5) using the entire family sample. The strongest signal was at 11q12.3 (rs2232932: HLODmax= 4.7, Pjoint= 6.6 × 10−6), a locus located ~2Mb upstream of the MS4A gene cluster. We additional identified a locus at 7p14.3 (rs10255835: HLODmax= 4.9, Pjoint= 1.2 × 10−5), a region harboring genes associated with the nervous system (GARS, GHRHR and NEUROD6).
DISCUSSION
Future sequencing efforts should focus on these regions since they may harbor familial LOAD causative mutations.
doi:10.1016/j.jalz.2015.07.487
PMCID: PMC4690771  PMID: 26433351
Caribbean Hispanic families; Late Onset Alzheimer’s Disease; linkage analysis; joint linkage and association
3.  Common polygenic variation enhances risk prediction for Alzheimer’s disease 
Brain  2015;138(12):3673-3684.
Heritability estimates for Alzheimer’s disease in genome-wide association studies increase substantially when weak effect loci are also considered. Escott-Price et al. investigate the polygenic architecture of Alzheimer’s disease and the accuracy of prediction models, and show that including the polygenic component of risk significantly improves accuracy of case prediction.
Heritability estimates for Alzheimer’s disease in genome-wide association studies increase substantially when weak effect loci are also considered. Escott-Price et al. investigate the polygenic architecture of Alzheimer’s disease and the accuracy of prediction models, and show that including the polygenic component of risk significantly improves accuracy of case prediction.
The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.
doi:10.1093/brain/awv268
PMCID: PMC5006219  PMID: 26490334
Alzheimer’s disease; polygenic score; predictive model
4.  Rarity of the Alzheimer Disease–Protective APP A673T Variant in the United States 
JAMA neurology  2015;72(2):209-216.
IMPORTANCE
Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
OBJECTIVE
To determine the frequency of the APP A673T variant in a large group of elderly cognitively normal controls and AD cases from the United States and in 2 case-control cohorts from Sweden.
DESIGN, SETTING, AND PARTICIPANTS
Case-control association analysis of variant APP A673T in US and Swedish white individuals comparing AD cases with cognitively intact elderly controls. Participants were ascertained at multiple university-associated medical centers and clinics across the United States and Sweden by study-specific sampling methods. They were from case-control studies, community-based prospective cohort studies, and studies that ascertained multiplex families from multiple sources.
MAIN OUTCOMES AND MEASURES
Genotypes for the APP A673T variant were determined using the Infinium HumanExome V1 Beadchip (Illumina, Inc) and by TaqMan genotyping (Life Technologies).
RESULTS
The A673T variant genotypes were evaluated in 8943 US AD cases, 10 480 US cognitively normal controls, 862 Swedish AD cases, and 707 Swedish cognitively normal controls. We identified 3 US individuals heterozygous for A673T, including 1 AD case (age at onset, 89 years) and 2 controls (age at last examination, 82 and 77 years). The remaining US samples were homozygous for the alanine (A673) allele. In the Swedish samples, 3 controls were heterozygous for A673T and all AD cases were homozygous for the A673 allele. We also genotyped a US family previously reported to harbor the A673T variant and found a mother-daughter pair, both cognitively normal at ages 72 and 84 years, respectively, who were both heterozygous for A673T; however, all individuals with AD in the family were homozygous for A673.
CONCLUSIONS AND RELEVANCE
The A673T variant is extremely rare in US cohorts and does not play a substantial role in risk for AD in this population. This variant may be primarily restricted to Icelandic and Scandinavian populations.
doi:10.1001/jamaneurol.2014.2157
PMCID: PMC4324097  PMID: 25531812
5.  Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease 
PLoS Genetics  2016;12(10):e1006327.
We performed an exome-wide association analysis in 1393 late-onset Alzheimer’s disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5–15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the β-amyloid cascade.
Author Summary
Alzheimer’s disease (AD) is the most common cause of dementia in the older adult population. There is substantial evidence for an important genetic contribution to AD risk. While prior work has comprehensively evaluated the contribution of common genetic variants in large population-based cohorts, the role of rare variants remains to be defined. Here, we have used a newer genotyping array to characterize less common variants, including those likely to impact the function of encoded proteins, in a combined cohort of 1393 AD cases and 8141 control subjects without AD. Our results implicate a novel, amino acid-changing variant, P155L, in the TM2D3 gene. This variant was discovered to be more common in the Icelandic population, where it was significantly associated with both increased risk and earlier age of onset of AD. Lastly, in order to examine the potential functional impact of the implicated variant, we performed additional studies in the fruit fly. Our results suggest that P155L causes a loss-of-function in TM2D3, in the context of Notch-Presenilin signal transduction. In sum, we identify a novel, rare TM2D3 variant in association with AD risk and highlight functional connections with AD-relevant biology.
doi:10.1371/journal.pgen.1006327
PMCID: PMC5072721  PMID: 27764101
6.  Age‐dependent effects of APOE ε4 in preclinical Alzheimer's disease 
Abstract
Objective
The ε4 allele of apolipoprotein E (APOE) is the strongest known common genetic risk factor for Alzheimer's disease (AD) and alters age of onset in retrospective studies. Here, we longitudinally test the effects of APOE ε4 genotype and age during progression from normal cognition to AD.
Methods
Using data from 5381 cognitively normal older individuals and Cox proportional hazards models, we longitudinally tested the effects of APOE genotype on progression from normal cognition to mild cognitive impairment (MCI) or AD in four age strata (<60, 60–70, 70–80, 80 + ) and with a sliding window approach between ages 60 and 85.
Results
We found that APOE ε4 carrier status and dosage significantly influenced progression to MCI or AD in all four age groups and that APOE ε4‐associated progression risk peaked between ages 70 and 75. We confirmed APOE ε4‐associated progression risk in a subset of the cohort with pathologically proven diagnoses.
Interpretation
Our findings indicate that in clinically normal individuals, APOE ε4 status significantly predicts progression to MCI or AD across older adulthood and that this risk varies with age. This information will be useful as therapeutic interventions become available and clinical decisions can be individually tailored based on age and genetic data.
doi:10.1002/acn3.333
PMCID: PMC5018579  PMID: 27648456
7.  Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease 
JAMA neurology  2016;73(6):691-697.
IMPORTANCE
Late-onset Alzheimer disease (AD), the most common form of dementia, places a large burden on families and society. Although epidemiological and clinical evidence suggests a relationship between inflammation and AD, their relationship is not well understood and could have implications for treatment and prevention strategies.
OBJECTIVE
To determine whether a subset of genes involved with increased risk of inflammation are also associated with increased risk for AD.
DESIGN, SETTING, AND PARTICIPANTS
In a genetic epidemiology study conducted in July 2015, we systematically investigated genetic overlap between AD (International Genomics of Alzheimer’s Project stage 1) and Crohn disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis using summary data from genome-wide association studies at multiple academic clinical research centers. P values and odds ratios from genome-wide association studies of more than 100 000 individuals were from previous comparisons of patients vs respective control cohorts. Diagnosis for each disorder was previously established for the parent study using consensus criteria.
MAIN OUTCOMES AND MEASURES
The primary outcome was the pleiotropic (conjunction) false discovery rate P value. Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer’s Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer’s Disease Neuroimaging Initiative); and gene expression in AD vs control brains (Gene Expression Omnibus data).
RESULTS
Eight single-nucleotide polymorphisms (false discovery rate P < .05) were associated with both AD and immune-mediated diseases. Of these, rs2516049 (closest gene HLA-DRB5; conjunction false discovery rate P = .04 for AD and psoriasis, 5.37 × 10−5 for AD, and 6.03 × 10−15 for psoriasis) and rs12570088 (closest gene IPMK; conjunction false discovery rate P = .009 for AD and Crohn disease, P = 5.73 × 10−6 for AD, and 6.57 × 10−5 for Crohn disease) demonstrated the same direction of allelic effect between AD and the immune-mediated diseases. Both rs2516049 and rs12570088 were significantly associated with neurofibrillary tangle pathology (P = .01352 and .03151, respectively); rs2516049 additionally correlated with longitudinal decline on Alzheimer’s Disease Assessment Scale cognitive subscale scores (β [SE], 0.405 [0.190]; P = .03). Regarding gene expression, HLA-DRA and IPMK transcript expression was significantly altered in AD brains compared with control brains (HLA-DRA: β [SE], 0.155 [0.024]; P = 1.97 × 10−10; IPMK: β [SE], −0.096 [0.013]; P = 7.57 × 10−13).
CONCLUSIONS AND RELEVANCE
Our findings demonstrate genetic overlap between AD and immune-mediated diseases and suggest that immune system processes influence AD pathogenesis and progression.
doi:10.1001/jamaneurol.2016.0150
PMCID: PMC4905783  PMID: 27088644
8.  Polygenic Overlap Between C-Reactive Protein, Plasma Lipids and Alzheimer's Disease 
Circulation  2015;131(23):2061-2069.
Background
Epidemiological findings suggest a relationship between Alzheimer's disease (AD), inflammation and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis.
Methods and Results
Using summary statistics (p-values and odds ratios) from genome-wide association studies of over 200,000 individuals, we investigated overlap in single nucleotide polymorphisms (SNPs) associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides (TG), high- (HDL) and low-density lipoprotein (LDL) levels. We found up to 50-fold enrichment of AD SNPs for different levels of association with CRP, LDL, HDL and TG SNPs using an FDR threshold < 0.05. By conditioning on polymorphisms associated with the four phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across four independent AD cohorts (total n = 29,054 AD cases and 114,824 healthy controls) and discovered two genome-wide significant variants on chromosome 4 (rs13113697, closest gene HS3ST1, odds ratio (OR) = 1.07, 95% confidence interval (CI) = 1.05-1.11, p = 2.86 × 10−8) and chromosome 10 (rs7920721, closest gene ECHDC3, OR = 1.07, 95% CI = 1.04-1.11, p = 3.38 × 10−8). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains.
Conclusions
We demonstrate genetic overlap between AD, CRP, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci including two genome-wide significant variants conferring increased risk for Alzheimer's disease.
doi:10.1161/CIRCULATIONAHA.115.015489
PMCID: PMC4677995  PMID: 25862742
Alzheimer's disease; inflammation; plasma lipids; GWAS
9.  Convergent genetic and expression data implicate immunity in Alzheimer's disease 
Jones, Lesley | Lambert, Jean-Charles | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Vedernikov, Alexey | Escott-Price, Valentina | Stone, Timothy | Richards, Alexander | Bellenguez, Céline | Ibrahim-Verbaas, Carla A | Naj, Adam C | Sims, Rebecca | Gerrish, Amy | Jun, Gyungah | DeStefano, Anita L | Bis, Joshua C | Beecham, Gary W | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A | Jones, Nicola | Smith, Albert V | Chouraki, Vincent | Thomas, Charlene | Ikram, M Arfan | Zelenika, Diana | Vardarajan, Badri N | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L | Buxbaum, Joseph D | Campion, Dominique | Crane, Paul K | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L | De Jager, Philip L | Deramecourt, Vincent | Johnston, Janet A | Evans, Denis | Lovestone, Simon | Letteneur, Luc | Kornhuber, Johanes | Tárraga, Lluís | Rubinsztein, David C | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M | Fiévet, Nathalie | Huentelman, Matthew J | Gill, Michael | Emilsson, Valur | Brown, Kristelle | Kamboh, M Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B | Myers, Amanda J | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Kehoe, Pat | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleὀ, Alberti | Bayer, Anthony | Tsuang, Debby W | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick | Hardy, John | Naranjo, Maria Candida Deniz | Razquin, Cristina | Bosco, Paola | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Mancuso, Michelangelo | Moebus, Susanne | Mecocci, Patrizia | del Zompo, Maria | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Bullido, Maria | Panza, Francesco | Caffarra, Paolo | Nacmias, Benedetta | Gilbert, John R | Mayhaus, Manuel | Jessen, Frank | Dichgans, Martin | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M | Ingelsson, Martin | Beekly, Duane | Alavarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G | Coto, Eliecer | Hamilton-Nelson, Kara L | Mateo, Ignacio | Owen, Michael J | Faber, Kelley M | Jonsson, Palmi V | Combarros, Onofre | O'Donovan, Michael C | Cantwell, Laura B | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H | Bennett, David A | Harris, Tamara B | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee FAG | Passmore, Peter | Montine, Thomas J | Bettens, Karolien | Rotter, Jerome I | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M | Kukull, Walter A | Hannequin, Didier | Powell, John F | Nalls, Michael A | Ritchie, Karen | Lunetta, Kathryn L | Kauwe, John SK | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R | Pastor, Pau | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M | Graff, Caroline | Psaty, Bruce M | Haines, Jonathan L | Lathrop, Mark | Pericak-Vance, Margaret A | Launer, Lenore J | Farrer, Lindsay A | van Duijn, Cornelia M | Van Broekhoven, Christine | Ramirez, Alfredo | Schellenberg, Gerard D | Seshadri, Sudha | Amouyel, Philippe | Williams, Julie | Holmans, Peter A
Background
Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis.
Methods
The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.
Results
ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05).
Conclusions
The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics.
doi:10.1016/j.jalz.2014.05.1757
PMCID: PMC4672734  PMID: 25533204
Alzheimer's disease; dementia; neurodegeneration; immune response; endocytosis; cholesterol metabolism; uniquitination; pathway analysis; ALIGATOR; Weighted gene coexpression network analysis
10.  Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus 
Molecular psychiatry  2015;20(12):1588-1595.
We investigated genetic overlap between Alzheimer’s disease (AD) and Parkinson’s disease (PD). Using summary statistics (p-values) from large recent genomewide association studies (GWAS) (total n = 89,904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis p-value across 5 independent AD cohorts = 1.65 × 10−7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD and extending prior work, we show that the MAPT region increases risk of Alzheimer’s neurodegeneration.
doi:10.1038/mp.2015.6
PMCID: PMC4539304  PMID: 25687773
11.  A NOVEL ALZHEIMER DISEASE LOCUS LOCATED NEAR THE GENE ENCODING TAU PROTEIN 
Jun, Gyungah | Ibrahim-Verbaas, Carla A. | Vronskaya, Maria | Lambert, Jean-Charles | Chung, Jaeyoon | Naj, Adam C. | Kunkle, Brian W. | Wang, Li-San | Bis, Joshua C. | Bellenguez, Céline | Harold, Denise | Lunetta, Kathryn L. | Destefano, Anita L. | Grenier-Boley, Benjamin | Sims, Rebecca | Beecham, Gary W. | Smith, Albert V. | Chouraki, Vincent | Hamilton-Nelson, Kara L. | Ikram, M. Arfan | Fievet, Nathalie | Denning, Nicola | Martin, Eden R. | Schmidt, Helena | Kamatani, Yochiro | Dunstan, Melanie L | Valladares, Otto | Laza, Agustin Ruiz | Zelenika, Diana | Ramirez, Alfredo | Foroud, Tatiana M. | Choi, Seung-Hoan | Boland, Anne | Becker, Tim | Kukull, Walter A. | van der Lee, Sven J. | Pasquier, Florence | Cruchaga, Carlos | Beekly, Duane | Fitzpatrick, Annette L. | Hanon, Oliver | Gill, Michael | Barber, Robert | Gudnason, Vilmundur | Campion, Dominique | Love, Seth | Bennett, David A. | Amin, Najaf | Berr, Claudine | Tsolaki, Magda | Buxbaum, Joseph D. | Lopez, Oscar L. | Deramecourt, Vincent | Fox, Nick C | Cantwell, Laura B. | Tárraga, Lluis | Dufouil, Carole | Hardy, John | Crane, Paul K. | Eiriksdottir, Gudny | Hannequin, Didier | Clarke, Robert | Evans, Denis | Mosley, Thomas H. | Letenneur, Luc | Brayne, Carol | Maier, Wolfgang | De Jager, Philip | Emilsson, Valur | Dartigues, Jean-François | Hampel, Harald | Kamboh, M. Ilyas | de Bruijn, Renee F.A.G. | Tzourio, Christophe | Pastor, Pau | Larson, Eric B. | Rotter, Jerome I. | O’Donovan, Michael C | Montine, Thomas J. | Nalls, Michael A. | Mead, Simon | Reiman, Eric M. | Jonsson, Palmi V. | Holmes, Clive | St George-Hyslop, Peter H. | Boada, Mercè | Passmore, Peter | Wendland, Jens R. | Schmidt, Reinhold | Morgan, Kevin | Winslow, Ashley R. | Powell, John F | Carasquillo, Minerva | Younkin, Steven G. | Jakobsdóttir, Jóhanna | Kauwe, John SK | Wilhelmsen, Kirk C. | Rujescu, Dan | Nöthen, Markus M | Hofman, Albert | Jones, Lesley | Haines, Jonathan L. | Psaty, Bruce M. | Van Broeckhoven, Christine | Holmans, Peter | Launer, Lenore J. | Mayeux, Richard | Lathrop, Mark | Goate, Alison M. | Escott-Price, Valentina | Seshadri, Sudha | Pericak-Vance, Margaret A. | Amouyel, Philippe | Williams, Julie | van Duijn, Cornelia M. | Schellenberg, Gerard D. | Farrer, Lindsay A.
Molecular psychiatry  2015;21(1):108-117.
APOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer’s Project (IGAP) Consortium in APOE ε4+ (10,352 cases and 9,207 controls) and APOE ε4− (7,184 cases and 26,968 controls) subgroups as well as in the total sample testing for interaction between a SNP and APOE ε4 status. Suggestive associations (P<1x10−4) in stage 1 were evaluated in an independent sample (stage 2) containing 4,203 subjects (APOE ε4+: 1,250 cases and 536 controls; APOE ε4-: 718 cases and 1,699 controls). Among APOE ε4− subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 datasets (best SNP, rs2732703, P=5·8x10−9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100 kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4− subjects (MS4A6A/MS4A4A/ MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6x10−7) is noteworthy because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3x10−8), frontal cortex (P≤1.3x10−9), and temporal cortex (P≤1.2x10−11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2x10−6) and temporal cortex (P=2.6x10−6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared to persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted.
doi:10.1038/mp.2015.23
PMCID: PMC4573764  PMID: 25778476
12.  ABCA7 frameshift deletion associated with Alzheimer disease in African Americans 
Neurology: Genetics  2016;2(3):e79.
Objective:
To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD.
Methods:
Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families.
Results:
A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42–3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12–2.44]), and joint analysis increased the significance (p = 1.414 × 10−5, OR = 1.81 [95% CI: 1.38–2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function.
Conclusions:
This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD.
doi:10.1212/NXG.0000000000000079
PMCID: PMC4871806  PMID: 27231719
13.  Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer's disease 
Aim
Neuropathological examination of both individuals in a monozygotic (MZ) twin pair with Alzheimer's disease (AD) is rare, especially in the molecular genetic era. We had the opportunity to assess the concordance and discordance of clinical presentation and neuropathology in three MZ twin pairs with AD.
Methods
The MZ twins were identified and characterised by the University of Washington Alzheimer's Disease Research Center. We reviewed the available clinical and neuropathological records for all six cases looking specifically for concordance and discordance of clinical phenotype, neuritic amyloid plaques (NP), neurofibrillary tangles (NFT) and Lewy related pathology (LRP).
Results
Discordance in age of onset for developing AD in the MZ twins varied from 4 to 18 years. Clinical presentations also differed between twins. One twin presented with a dementia with Lewy Body clinical syndrome while the other presented with typical clinical AD. Neuropathology within the MZ twin pairs was concordant for NP and NFT, regardless of duration of disease, and was discordant for LRP. This difference was most marked in the late onset AD twin pair. One pair was found to have a mutation in presenilin‐1 (PS1) (A79V) with remarkably late onset in a family member.
Conclusions
MZ twins with AD can vary considerably in age of onset, presentation and disease duration. The concordance of NP and NFT pathological change and the discordance of LRP support the concept that, in AD, the former are primarily under genetic control whereas the latter (LRP) is more influenced by disease duration and environmental factors. The A79V mutation in PS1 can be associated with very late onset of dementia.
doi:10.1136/jnnp.2006.113803
PMCID: PMC2117553  PMID: 17615170
14.  Shared genetic contribution to ischemic stroke and Alzheimer's disease 
Traylor, Matthew | Adib‐Samii, Poneh | Harold, Denise | Dichgans, Martin | Williams, Julie | Lewis, Cathryn M. | Markus, Hugh S. | Fornage, Myriam | Holliday, Elizabeth G | Sharma, Pankaj | Bis, Joshua C | Psaty, Bruce M | Seshadri, Sudha | Nalls, Mike A | Devan, William J | Boncoraglio, Giorgio | Malik, Rainer | Mitchell, Braxton D | Kittner, Steven J | Ikram, M Arfan | Clarke, Robert | Rosand, Jonathan | Meschia, James F | Sudlow, Cathie | Rothwell, Peter M | Levi, Christopher | Bevan, Steve | Kilarski, Laura L | Walters, Matthew | Thijs, Vincent | Slowik, Agnieszka | Lindgren, Arne | de Bakker, Paul I W | Lambert, Jean‐Charles | Ibrahim‐Verbaas, Carla A | Harold, Denise | Naj, Adam C | Sims, Rebecca | Bellenguez, Céline | Jun, Gyungah | DeStefano, Anita L | Bis, Joshua C | Beecham, Gary W | Grenier‐Boley, Benjamin | Russo, Giancarlo | Thornton‐Wells, Tricia A | Jones, Nicola | Smith, Albert V | Chouraki, Vincent | Thomas, Charlene | Ikram, M Arfan | Zelenika, Diana | Vardarajan, Badri N | Kamatani, Yoichiro | Lin, Chiao‐Feng | Gerrish, Amy | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L | Ruiz, Agustin | Bihoreau, Marie‐Thçrèse | Choi, Seung‐Hoan | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Ramirez, Alfredo | Hanon, Olivier | Fitzpatrick, Annette L | Buxbaum, Joseph D | Campion, Dominique | Crane, Paul K | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L | De Jager, Philip L | Deramecourt, Vincent | Johnston, Janet A | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Morón, Francisco J | Rubinsztein, David C | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M | Fiçvet, Nathalie | Huentelman, Matthew J | Gill, Michael | Brown, Kristelle | Kamboh, M Ilyas | Keller, Lina | Barberger‐Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B | Green, Robert | Myers, Amanda J | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | St George‐Hyslop, Peter | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petroula | Collinge, John | Sorbi, Sandro | Sanchez‐Garcia, Florentino | Fox, Nick C | Hardy, John | Deniz Naranjo, Maria Candida | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Mancuso, Michelangelo | Matthews, Fiona | Moebus, Susanne | Mecocci, Patrizia | Del Zompo, Maria | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Bullido, Maria | Panza, Francesco | Caffarra, Paolo | Nacmias, Benedetta | Gilbert, John R | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G | Coto, Eliecer | Hamilton‐Nelson, Kara L | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J | Faber, Kelley M | Jonsson, Palmi V | Combarros, Onofre | O'Donovan, Michael C | Cantwell, Laura B | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H | Bennett, David A | Harris, Tamara B | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F A G | Passmore, Peter | Montine, Thomas J | Bettens, Karolien | Rotter, Jerome I | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M | Kukull, Walter A | Hannequin, Didier | Powell, John F | Nalls, Michael A | Ritchie, Karen | Lunetta, Kathryn L | Kauwe, John S K | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R | Schmidt, Reinhold | Rujescu, Dan | Wang, Li‐San | Dartigues, Jean‐François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M | Graff, Caroline | Psaty, Bruce M | Jones, Lesley | Haines, Jonathan L | Holmans, Peter A | Lathrop, Mark | Pericak‐Vance, Margaret A | Launer, Lenore J | Farrer, Lindsay A | van Duijn, Cornelia M | Van Broeckhoven, Christine | Moskvina, Valentina | Seshadri, Sudha | Williams, Julie | Schellenberg, Gerard D | Amouyel, Philippe
Annals of Neurology  2016;79(5):739-747.
Objective
Increasing evidence suggests epidemiological and pathological links between Alzheimer's disease (AD) and ischemic stroke (IS). We investigated the evidence that shared genetic factors underpin the two diseases.
Methods
Using genome‐wide association study (GWAS) data from METASTROKE + (15,916 IS cases and 68,826 controls) and the International Genomics of Alzheimer's Project (IGAP; 17,008 AD cases and 37,154 controls), we evaluated known associations with AD and IS. On the subset of data for which we could obtain compatible genotype‐level data (4,610 IS cases, 1,281 AD cases, and 14,320 controls), we estimated the genome‐wide genetic correlation (rG) between AD and IS, and the three subtypes (cardioembolic, small vessel, and large vessel), using genome‐wide single‐nucleotide polymorphism (SNP) data. We then performed a meta‐analysis and pathway analysis in the combined AD and small vessel stroke data sets to identify the SNPs and molecular pathways through which disease risk may be conferred.
Results
We found evidence of a shared genetic contribution between AD and small vessel stroke (rG [standard error] = 0.37 [0.17]; p = 0.011). Conversely, there was no evidence to support shared genetic factors in AD and IS overall or with the other stroke subtypes. Of the known GWAS associations with IS or AD, none reached significance for association with the other trait (or stroke subtypes). A meta‐analysis of AD IGAP and METASTROKE + small vessel stroke GWAS data highlighted a region (ATP5H/KCTD2/ICT1) associated with both diseases (p = 1.8 × 10−8). A pathway analysis identified four associated pathways involving cholesterol transport and immune response.
Interpretation
Our findings indicate shared genetic susceptibility to AD and small vessel stroke and highlight potential causal pathways and loci. Ann Neurol 2016;79:739–747
doi:10.1002/ana.24621
PMCID: PMC4864940  PMID: 26913989
15.  PLXNA4 is Associated with Alzheimer Disease and Modulates Tau Phosphorylation 
Annals of neurology  2014;76(3):379-392.
Objective
Much of the genetic basis for Alzheimer disease (AD) is unexplained. We sought to identify novel AD loci using a unique family-based approach that can detect robust associations with infrequent variants (minor allele frequency <0.10).
Methods
We conducted a genome-wide association study in the Framingham Heart Study (FHS) (discovery) and NIA-LOAD (replication) family-based cohorts using an approach that accounts for family structure and calculates a risk score for AD as the outcome. Links between the most promising gene candidate and AD pathogenesis were explored in silico as well as experimentally in cell-based models and in human brain.
Results
Genome-wide significant association was identified with a PLXNA4 SNP (rs277470) located in a region encoding the semaphorin-3A (SEMA3A) binding domain (meta-analysis p value [meta-P]=4.1×10−8). A test for association with the entire region was also significant (meta-P=3.2×10−4). Transfection of SH-SY5Y cells or primary rat neurons with full-length PLXNA4 (TS1) increased tau phosphorylation when stimulated by SEMA3A. The opposite effect was observed when transfected with shorter isoforms (TS2 and TS3). However, transfection of any isoform into HEK293 cells stably expressing APP did not result in differential effects on APP processing or Aβ production. Late-stage AD cases (n=9) compared to controls (n=5) had 1.9-fold increased expression of TS1 in cortical brain tissue (P=1.6×10−4). Expression of TS1 was significantly correlated with the Clinical Dementia Rating score (ρ=0.75, P=2.2×10−4), plaque density (ρ=0.56, P=0.01) and Braak stage (ρ=0.54, P=0.02).
Interpretation
Our results indicate that PLXNA4 has a role in AD pathogenesis through isoform-specific effects on tau phosphorylation.
doi:10.1002/ana.24219
PMCID: PMC4830273  PMID: 25043464
16.  C9orf72 Hexanucleotide Repeat Expansion and Guam Amyotrophic Lateral Sclerosis–Parkinsonism-Dementia Complex 
JAMA neurology  2013;70(6):742-745.
Importance
High-prevalence foci of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) exist in Japanese on the Kii Peninsula of Japan and in the Chamorros of Guam. Clinical and neuropathologic similarities suggest that the disease in these 2 populations may be related. Recent findings showed that some of the Kii Peninsula ALS cases had pathogenic C9orf72 repeat expansions, a genotype that causes ALS in Western populations.
Objectives
To perform genotyping among Guam residents to determine if the C9orf72 expanded repeat allele contributes to ALS-PDC in this population and to evaluate LRRK2 for mutations in the same population.
Design and Setting Case-control series from neurodegenerative disease research programs on Guam that screened residents for ALS, PDC, and dementia.
Participants Study participants included 24 with ALS and 22 with PDC and 43 older control subjects with normal cognition ascertained between 1956 and 2006. All but one participant were Chamorro, the indigenous people of Guam. A single individual of white race/ethnicity with ALS was ascertained on Guam during the study.
Main Outcomes and Measures Participants were screened for C9orf72 hexanucleotide repeat length. Participants with repeat numbers in great excess of 30 were considered to have pathogenic repeat expansions. LRRK2 was screened for point mutations by DNA sequencing.
Results We found a single individual with an expanded pathogenic hexanucleotide repeat. This individual of white race/ethnicity with ALS was living on Guam at the time of ascertainment but had been born in the United States. All Chamorro participants with ALS and PDC and control subjects had normal repeats, ranging from 2 to 17 copies. No pathogenic LRRK2 mutations were found.
Conclusions and Relevance Unlike participants with ALS from the Kii Peninsula, C9orf72 expansions do not cause ALS-PDC in Chamorros. Likewise, LRRK2 mutations do not cause Guam ALS-PDC.
doi:10.1001/jamaneurol.2013.1817
PMCID: PMC3771869  PMID: 23588498
17.  Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease 
Neurology: Genetics  2016;2(1):e41.
Objective:
The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk.
Methods:
Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls.
Results:
We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family.
Conclusion:
The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.
doi:10.1212/NXG.0000000000000041
PMCID: PMC4817909  PMID: 27066578
18.  The Genetics and Neuropathology of Alzheimer’s Disease 
Acta neuropathologica  2012;124(3):305-323.
Here we review the genetic causes and risks for Alzheimer’s disease (AD). Early work identified mutations in three genes that cause AD: APP, PSEN1 and PSEN2. Although mutations in these genes are rare causes of AD, their discovery had a major impact on our understanding of molecular mechanisms of AD. Early work also revealed the ε4 allele of the APOE as a strong risk factor for AD. Subsequently, SORL1 also was identified as an AD risk gene. More recently, advances in our knowledge of the human genome, made possible by technological advances and methods to analyze genomic data, permit systematic identification of genes that contribute to AD risk. This work, so far accomplished through single nucleotide polymorphism arrays, has revealed nine new genes implicated in AD risk (ABCA7, BIN1, CD33, CD2AP, CLU, CR1, EPHA1, MS4A4E/MS4A6A, and PICALM). We review the relationship between these mutations and genetic variants and the neuropathologic features of AD and related disorders. Together, these discoveries point toward a new era in neurodegenerative disease research that impacts not only AD but also related illnesses that produce cognitive and behavioral deficits.
doi:10.1007/s00401-012-0996-2
PMCID: PMC3708460  PMID: 22618995
Alzheimer’s disease; genetics; genome-wide association studies; neuropathology
19.  Patterns and rates of exonic de novo mutations in autism spectrum disorders 
Nature  2012;485(7397):242-245.
Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors.
doi:10.1038/nature11011
PMCID: PMC3613847  PMID: 22495311
20.  Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals 
JAMA neurology  2015;72(11):1313-1323.
IMPORTANCE
Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays.
OBJECTIVE
To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals.
DESIGN, SETTING, AND PARTICIPANTS
Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer’s Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project–Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals.
MAIN OUTCOMES AND MEASURES
The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses.
RESULTS
The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer’s Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project–Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers.
CONCLUSIONS AND RELEVANCE
To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.
doi:10.1001/jamaneurol.2015.1700
PMCID: PMC4641052  PMID: 26366463
21.  Two rare AKAP9 variants are associated with Alzheimer disease in African Americans 
Background
Less is known about the genetic basis of Alzheimer disease (AD) in African Americans (AAs) than in non-Hispanic whites.
Methods
Whole exome sequencing (WES) was performed on seven AA AD cases. Disease association with potentially AD-related variants from WES was assessed in an AA discovery cohort of 422 cases and 394 controls. Replication was sought in an AA sample of 1,037 cases and 1,869 controls from the Alzheimer Disease Genetics Consortium (ADGC).
Results
Forty-four SNPs from WES passed filtering criteria and were successfully genotyped, Nominally significant (p<0.05) association to AD was observed with two African-descent specific AKAP9 SNPs in tight linkage disequilibrium: rs144662445 (p=0.014) and rs149979685 (p=0.037). These associations were replicated in the ADGC sample (rs144662445: p=0.0022, odds ratio [OR]=2.75; rs149979685: p=0.0022, OR=3.61).
Conclusions
Because AKAP9 was not previously linked to AD risk, this study indicates a potential new disease mechanism.
doi:10.1016/j.jalz.2014.06.010
PMCID: PMC4253055  PMID: 25172201
whole-exome sequencing; late-onset Alzheimer disease; rare variant; genetic association; African American; AKAP9
22.  Meta-Analysis confirms CR1, CLU, and PICALM as Alzheimer’s disease risk loci and reveals interactions with APOE genotypes 
Archives of neurology  2010;67(12):1473-1484.
Objectives
To determine whether genotypes at CLU, PICALM, and CR1 confer risk for Alzheimer’s disease (AD) and whether risk for AD associated with these genes is influenced by APOE genotypes.
Design
Association study of AD and CLU, PICALM, CR1 and APOE genotypes.
Setting
Academic research institutions in the United States, Canada, and Israel.
Participants
7,070 AD cases, 3,055 with autopsies, and 8,169 elderly cognitively normal controls, 1,092 with autopsies from 12 different studies, including Caucasians, African Americans, Israeli-Arabs, and Caribbean Hispanics.
Results
Unadjusted, CLU [odds ratio (OR) = 0.91, 95% confidence interval (CI) = 0.85 – 0.96 for single nucleotide polymorphism (SNP) rs11136000], CR1 (OR = 1.14, CI = 1.07 – 1.22, SNP rs3818361), and PICALM (OR = 0.89, CI = 0.84 – 0.94, SNP rs3851179) were associated with AD in Caucasians. None were significantly associated with AD in the other ethnic groups. APOE ε4 was significantly associated with AD (ORs from 1.80 to 9.05) in all but one small Caucasian cohort and in the Arab cohort. Adjusting for age, sex, and the presence of at least one APOE ε4 allele greatly reduced evidence for association with PICALM but not CR1 or CLU. Models with the main SNP effect, APOE ε4 (+/−), and an interaction term showed significant interaction between APOE ε4 (+/−) and PICALM.
Conclusions
We confirm in a completely independent dataset that CR1, CLU, and PICALM are AD susceptibility loci in European ancestry populations. Genotypes at PICALM confer risk predominantly in APOE ε4-positive subject. Thus, APOE and PICALM synergistically interact.
doi:10.1001/archneurol.2010.201
PMCID: PMC3048805  PMID: 20697030
23.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease 
Naj, Adam C | Jun, Gyungah | Beecham, Gary W | Wang, Li-San | Vardarajan, Badri Narayan | Buros, Jacqueline | Gallins, Paul J | Buxbaum, Joseph D | Jarvik, Gail P | Crane, Paul K | Larson, Eric B | Bird, Thomas D | Boeve, Bradley F | Graff-Radford, Neill R | De Jager, Philip L | Evans, Denis | Schneider, Julie A | Carrasquillo, Minerva M | Ertekin-Taner, Nilufer | Younkin, Steven G | Cruchaga, Carlos | Kauwe, John SK | Nowotny, Petra | Kramer, Patricia | Hardy, John | Huentelman, Matthew J | Myers, Amanda J | Barmada, Michael M | Demirci, F. Yesim | Baldwin, Clinton T | Green, Robert C | Rogaeva, Ekaterina | St George-Hyslop, Peter | Arnold, Steven E | Barber, Robert | Beach, Thomas | Bigio, Eileen H | Bowen, James D | Boxer, Adam | Burke, James R | Cairns, Nigel J | Carlson, Chris S | Carney, Regina M | Carroll, Steven L | Chui, Helena C | Clark, David G | Corneveaux, Jason | Cotman, Carl W | Cummings, Jeffrey L | DeCarli, Charles | DeKosky, Steven T | Diaz-Arrastia, Ramon | Dick, Malcolm | Dickson, Dennis W | Ellis, William G | Faber, Kelley M | Fallon, Kenneth B | Farlow, Martin R | Ferris, Steven | Frosch, Matthew P | Galasko, Douglas R | Ganguli, Mary | Gearing, Marla | Geschwind, Daniel H | Ghetti, Bernardino | Gilbert, John R | Gilman, Sid | Giordani, Bruno | Glass, Jonathan D | Growdon, John H | Hamilton, Ronald L | Harrell, Lindy E | Head, Elizabeth | Honig, Lawrence S | Hulette, Christine M | Hyman, Bradley T | Jicha, Gregory A | Jin, Lee-Way | Johnson, Nancy | Karlawish, Jason | Karydas, Anna | Kaye, Jeffrey A | Kim, Ronald | Koo, Edward H | Kowall, Neil W | Lah, James J | Levey, Allan I | Lieberman, Andrew P | Lopez, Oscar L | Mack, Wendy J | Marson, Daniel C | Martiniuk, Frank | Mash, Deborah C | Masliah, Eliezer | McCormick, Wayne C | McCurry, Susan M | McDavid, Andrew N | McKee, Ann C | Mesulam, Marsel | Miller, Bruce L | Miller, Carol A | Miller, Joshua W | Parisi, Joseph E | Perl, Daniel P | Peskind, Elaine | Petersen, Ronald C | Poon, Wayne W | Quinn, Joseph F | Rajbhandary, Ruchita A | Raskind, Murray | Reisberg, Barry | Ringman, John M | Roberson, Erik D | Rosenberg, Roger N | Sano, Mary | Schneider, Lon S | Seeley, William | Shelanski, Michael L | Slifer, Michael A | Smith, Charles D | Sonnen, Joshua A | Spina, Salvatore | Stern, Robert A | Tanzi, Rudolph E | Trojanowski, John Q | Troncoso, Juan C | Deerlin, Vivianna M Van | Vinters, Harry V | Vonsattel, Jean Paul | Weintraub, Sandra | Welsh-Bohmer, Kathleen A | Williamson, Jennifer | Woltjer, Randall L | Cantwell, Laura B | Dombroski, Beth A | Beekly, Duane | Lunetta, Kathryn L | Martin, Eden R | Kamboh, M. Ilyas | Saykin, Andrew J | Reiman, Eric M | Bennett, David A | Morris, John C | Montine, Thomas J | Goate, Alison M | Blacker, Deborah | Tsuang, Debby W | Hakonarson, Hakon | Kukull, Walter A | Foroud, Tatiana M | Haines, Jonathan L | Mayeux, Richard | Pericak-Vance, Margaret A | Farrer, Lindsay A | Schellenberg, Gerard D
Nature genetics  2011;43(5):436-441.
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study (GWAS) of late-onset Alzheimer disease (LOAD) using a 3 stage design consisting of a discovery stage (Stage 1) and two replication stages (Stages 2 and 3). Both joint and meta-analysis analysis approaches were used. We obtained genome-wide significant results at MS4A4A [rs4938933; Stages 1+2, meta-analysis (PM) = 1.7 × 10−9, joint analysis (PJ) = 1.7 × 10−9; Stages 1–3, PM = 8.2 × 10−12], CD2AP (rs9349407; Stages 1–3, PM = 8.6 × 10−9), EPHA1 (rs11767557; Stages 1–3 PM = 6.0 × 10−10), and CD33 (rs3865444; Stages 1–3, PM = 1.6 × 10−9). We confirmed that CR1 (rs6701713; PM = 4.6×10−10, PJ = 5.2×10−11), CLU (rs1532278; PM = 8.3 × 10−8, PJ = 1.9×10−8), BIN1 (rs7561528; PM = 4.0×10−14; PJ = 5.2×10−14), and PICALM (rs561655; PM = 7.0 × 10−11, PJ = 1.0×10−10) but not EXOC3L2 are LOAD risk loci1–3.
doi:10.1038/ng.801
PMCID: PMC3090745  PMID: 21460841
24.  Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy 
Nature communications  2015;6:7247.
Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here we conduct a GWAS in CBD cases (n = 152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P = 1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P = 3.41 × 10−8), and 2p22 at SOS1 (rs963731; P = 1.76 × 10−7). Testing for association of CBD with top PSP GWAS SNPs identified associations at MOBP (3p22; rs1768208; P = 2.07 × 10−7) and MAPT H1c (17q21; rs242557; P = 7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT, at 3p22 MOBP (myelin-associated oligodendrocytic protein).
doi:10.1038/ncomms8247
PMCID: PMC4469997  PMID: 26077951
25.  Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy 
Nature Communications  2015;6:7247.
Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10−8), and 2p22 at SOS1 (rs963731; P=1.76 × 10−7). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10−7) and MAPT H1c (17q21; rs242557; P=7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein).
Corticobasal degeneration is a rare neurodegenerative disorder that can only be definitively diagnosed by autopsy. Here, Kouri et al. conduct a genome-wide-association study and identify two genetic susceptibility loci 17q21 (MAPT) and 3p12 (MOBP), and a novel susceptibility locus at 8p12.
doi:10.1038/ncomms8247
PMCID: PMC4469997  PMID: 26077951

Results 1-25 (109)