Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Most genetic risk for autism resides with common variation 
Nature genetics  2014;46(8):881-885.
A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (henceforth autism) the nature of its allelic spectrum is uncertain. Individual risk genes have been identified from rare variation, especially de novo mutations1–8. From this evidence one might conclude that rare variation dominates its allelic spectrum, yet recent studies show that common variation, individually of small effect, has substantial impact en masse9,10. At issue is how much of an impact relative to rare variation. Using a unique epidemiological sample from Sweden, novel methods that distinguish total narrow-sense heritability from that due to common variation, and by synthesizing results from other studies, we reach several conclusions about autism’s genetic architecture: its narrow-sense heritability is ≈54% and most traces to common variation; rare de novo mutations contribute substantially to individuals’ liability; still their contribution to variance in liability, 2.6%, is modest compared to heritable variation.
PMCID: PMC4137411  PMID: 25038753
2.  Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism 
Cell  2013;155(5):997-1007.
Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD “seed” genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology.
PMCID: PMC3995413  PMID: 24267886
3.  Adjusting head circumference for covariates in autism: clinical correlates of a highly heritable continuous trait 
Biological psychiatry  2013;74(8):576-584.
Brain development follows a different trajectory in children with Autism Spectrum Disorders (ASD) than in typically developing children. A proxy for neurodevelopment could be head circumference (HC), but studies assessing HC and its clinical correlates in ASD have been inconsistent. This study investigates HC and clinical correlates in the Simons Simplex Collection cohort.
We used a mixed linear model to estimate effects of covariates and the deviation from the expected HC given parental HC (genetic deviation). After excluding individuals with incomplete data, 7225 individuals in 1891 families remained for analysis. We examined the relationship between HC/genetic deviation of HC and clinical parameters.
Gender, age, height, weight, genetic ancestry and ASD status were significant predictors of HC (estimate of the ASD effect=0.2cm). HC was approximately normally distributed in probands and unaffected relatives, with only a few outliers. Genetic deviation of HC was also normally distributed, consistent with a random sampling of parental genes. Whereas larger HC than expected was associated with ASD symptom severity and regression, IQ decreased with the absolute value of the genetic deviation of HC.
Measured against expected values derived from covariates of ASD subjects, statistical outliers for HC were uncommon. HC is a strongly heritable trait and population norms for HC would be far more accurate if covariates including genetic ancestry, height and age were taken into account. The association of diminishing IQ with absolute deviation from predicted HC values suggests HC could reflect subtle underlying brain development and warrants further investigation.
PMCID: PMC3772969  PMID: 23746936
head circumference; body metrics; genetic ancestry; IQ; autism spectrum disorder; ASD
4.  Rare deleterious mutations of the gene EFR3A in autism spectrum disorders 
Molecular Autism  2014;5:31.
Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety of functions at the neural synapse. We hypothesized that deleterious mutations in EFR3A would be significantly associated with ASD.
We conducted a large case/control association study by deep resequencing and analysis of whole-exome data for coding and splice site variants in EFR3A. We determined the potential impact of these variants on protein structure and function by a variety of conservation measures and analysis of the Saccharomyces cerevisiae Efr3 crystal structure. We also analyzed the expression pattern of EFR3A in human brain tissue.
Rare nonsynonymous mutations in EFR3A were more common among cases (16 / 2,196 = 0.73%) than matched controls (12 / 3,389 = 0.35%) and were statistically more common at conserved nucleotides based on an experiment-wide significance threshold (P = 0.0077, permutation test). Crystal structure analysis revealed that mutations likely to be deleterious were also statistically more common in cases than controls (P = 0.017, Fisher exact test). Furthermore, EFR3A is expressed in cortical neurons, including pyramidal neurons, during human fetal brain development in a pattern consistent with ASD-related genes, and it is strongly co-expressed (P < 2.2 × 10−16, Wilcoxon test) with a module of genes significantly associated with ASD.
Rare deleterious mutations in EFR3A were found to be associated with ASD using an experiment-wide significance threshold. Synaptic phosphoinositide metabolism has been strongly implicated in syndromic forms of ASD. These data for EFR3A strengthen the evidence for the involvement of this pathway in idiopathic autism.
PMCID: PMC4032628  PMID: 24860643
Autism spectrum disorder; Genetics; Rare variants; EFR3A; Synapse; Phosphoinositide metabolism
5.  DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics 
Molecular Autism  2014;5:22.
De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes.
To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk.
Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model.
Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders.
PMCID: PMC4016412  PMID: 24602502
Autism; Risk prediction; Gene discovery; Weighted gene co-expression network analysis; Network; Hidden Markov random field; Neurite extension; Neuronal arborization
6.  Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Beuren syndrome region, are strongly associated with autism 
Neuron  2011;70(5):863-885.
Given prior evidence for the contribution of rare copy number variations (CNVs) to autism spectrum disorders (ASD), we studied these events in 4,457 individuals from 1,174 simplex families, composed of parents, a proband and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, featuring a highly social personality. We identify rare recurrent de novo CNVs at five additional regions including two novel ASD loci, 16p13.2 (including the genes USP7 and C16orf72) and Cadherin13, and implement a rigorous new approach to evaluating the statistical significance of these observations. Overall, we find large de novo CNVs carry substantial risk (OR=3.55; CI =2.16-7.46, p=6.9 × 10−6); estimate the presence of 130-234 distinct ASD-related CNV intervals across the genome; and, based on data from multiple studies, present compelling evidence for the association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin1.
PMCID: PMC3939065  PMID: 21658581
The annals of applied statistics  2012;7(2):669-690.
Recent technological advances coupled with large sample sets have uncovered many factors underlying the genetic basis of traits and the predisposition to complex disease, but much is left to discover. A common thread to most genetic investigations is familial relationships. Close relatives can be identified from family records, and more distant relatives can be inferred from large panels of genetic markers. Unfortunately these empirical estimates can be noisy, especially regarding distant relatives. We propose a new method for denoising genetically—inferred relationship matrices by exploiting the underlying structure due to hierarchical groupings of correlated individuals. The approach, which we call Treelet Covariance Smoothing, employs a multiscale decomposition of covariance matrices to improve estimates of pairwise relationships. On both simulated and real data, we show that smoothing leads to better estimates of the relatedness amongst distantly related individuals. We illustrate our method with a large genome-wide association study and estimate the “heritability” of body mass index quite accurately. Traditionally heritability, defined as the fraction of the total trait variance attributable to additive genetic effects, is estimated from samples of closely related individuals using random effects models. We show that by using smoothed relationship matrices we can estimate heritability using population-based samples. Finally, while our methods have been developed for refining genetic relationship matrices and improving estimates of heritability, they have much broader potential application in statistics. Most notably, for error-in-variables random effects models and settings that require regularization of matrices with block or hierarchical structure.
PMCID: PMC3935431  PMID: 24587841
Covariance estimation; cryptic relatedness; genome-wide association; heritability; kinship
8.  Evaluation of HLA Polymorphisms in Relation to Schizophrenia Risk and Infectious Exposure 
Schizophrenia Bulletin  2012;38(6):1149-1154.
Genome-wide association studies (GWAS) implicate single nucleotide polymorphisms (SNPs) on chromosome 6p21.3-22.1, the human leukocyte antigen (HLA) region, as common risk factors for schizophrenia (SZ). Other studies implicate viral and protozoan exposure. Our study tests chromosome 6p SNPs for effects on SZ risk with and without exposure. Method: GWAS-significant SNPs and ancestry-informative marker SNPs were analyzed among African American patients with SZ (n = 604) and controls (n = 404). Exposure to herpes simplex virus, type 1 (HSV-1), cytomegalovirus (CMV), and Toxoplasma gondii (TOX) was assayed using specific antibody assays. Results: Five SNPs were nominally associated with SZ, adjusted for population admixture (P < .05, uncorrected for multiple comparisons). These SNPs were next analyzed in relation to infectious exposure. Multivariate analysis indicated significant association between rs3130297 genotype and HSV-1 exposure; the associated allele was different from the SZ risk allele. Conclusions: We propose a model for the genesis of SZ incorporating genomic variation in the HLA region and neurotropic viral exposure for testing in additional, independent African American samples.
PMCID: PMC3494045  PMID: 22966150
HLA; gene; HSV-1; cytomegalovirus; schizophrenia; African American; kwd>
9.  Vitamin D Insufficiency and Severe Asthma Exacerbations in Puerto Rican Children 
Rationale: Vitamin D insufficiency (a serum 25(OH)D <30 ng/ml) has been associated with severe asthma exacerbations, but this could be explained by underlying racial ancestry or disease severity. Little is known about vitamin D and asthma in Puerto Ricans.
Objectives: To examine whether vitamin D insufficiency is associated with severe asthma exacerbations in Puerto Rican children, independently of racial ancestry, atopy, and time outdoors.
Methods: A cross-sectional study was conducted of 560 children ages 6–14 years with (n = 287) and without (n = 273) asthma in San Juan, Puerto Rico. We measured plasma vitamin D and estimated the percentage of African racial ancestry among participants using genome-wide genotypic data. We tested whether vitamin D insufficiency is associated with severe asthma exacerbations, lung function, or atopy (greater than or equal to one positive IgE to allergens) using logistic or linear regression. Multivariate models were adjusted for African ancestry, time outdoors, atopy, and other covariates.
Measurements and Main Results: Vitamin D insufficiency was common in children with (44%) and without (47%) asthma. In multivariate analyses, vitamin D insufficiency was associated with higher odds of greater than or equal to one severe asthma exacerbation in the prior year (odds ratio [OR], 2.6; 95% confidence interval [CI], 1.5–4.9; P = 0.001) and atopy, and a lower FEV1/FVC in cases. After stratification by atopy, the magnitude of the association between vitamin D insufficiency and severe exacerbations was greater in nonatopic (OR, 6.2; 95% CI, 2–21.6; P = 0.002) than in atopic (OR, 2; 95% CI, 1–4.1; P = 0.04) cases.
Conclusions: Vitamin D insufficiency is associated with severe asthma exacerbations in Puerto Rican children, independently of racial ancestry, atopy, or markers of disease severity or control.
PMCID: PMC3406083  PMID: 22652028
vitamin D; asthma exacerbations; Puerto Ricans; childhood
10.  Genetic Analysis of Vertebral Trabecular Bone Density and Cross-Sectional Area in Older Men 
Vertebral bone mineral density (BMD) and cross-sectional area (CSA) are important determinants of vertebral bone strength. Little is known about the specific genetic variants that influence these phenotypes in humans. We investigated the potential genetic variants associated with vertebral trabecular volumetric BMD (vBMD) and CSA measured by quantitative computed tomography (QCT). We initially tested for association between these phenotypes and 4608 tagging and potentially functional single nucleotide polymorphisms (SNPs) in 383 candidate genes in 862 community-dwelling Caucasian men aged ≥65 years in the Osteoporotic Fractures in Men Study (MrOS). The most promising SNP associations (P<0.01) were then validated by genotyping an additional 1,156 randomly sampled men from the same cohort. We identified 11 SNPs in 10 genes (TGFBR3, SOST, KL, CALCR, LEP, CSF1R, PTN, GNRH2, FGFR2, MEPE) that were consistently associated with trabecular vBMD and 5 SNPs in 5 genes (CYP11B1, DVL2, DLX5, WNT4, PAX7) that were consistently associated with CSA in both samples (p<0.005). None of the SNPs associated with trabecular vBMD were associated with CSA. Our findings raise the possibility that at least some of the loci for vertebral trabecular BMD and bone size may be distinct.
PMCID: PMC3691107  PMID: 21153022
Osteoporosis; Genetics; BMD; men; QCT; Polymorphism
11.  Genome-wide Association Study of Alzheimer’s disease with Psychotic Symptoms 
Molecular psychiatry  2011;17(12):1316-1327.
Psychotic symptoms occur in approximately 40% of subjects with Alzheimer’s disease (AD) and are associated with more rapid cognitive decline and increased functional deficits. They show heritability up to 61% and have been proposed as a marker for a disease subtype suitable for gene mapping efforts. We undertook a combined analysis of three genome-wide association studies (GWAS) to identify loci that a) increase susceptibility to an AD and subsequent psychotic symptoms; or b) modify risk of psychotic symptoms in the presence of neurodegeneration caused by AD. 1299 AD cases with psychosis (AD+P), 735 AD cases without psychosis (AD-P) and 5659 controls were drawn from GERAD1, the NIA-LOAD family study and the University of Pittsburgh ADRC GWAS. Unobserved genotypes were imputed to provide data on > 1.8 million SNPs. Analyses in each dataset were completed comparing a) AD+P to AD-P cases, and b) AD+P cases with controls (GERAD1, ADRC only). Aside from the APOE locus, the strongest evidence for association was observed in an intergenic region on chromosome 4 (rs753129; ‘AD+PvAD-P’ P=2.85 × 10−7; ‘AD+PvControls’ P=1.11 × 10−4). SNPs upstream of SLC2A9 (rs6834555, P=3.0×10−7) and within VSNL1 (rs4038131, P=5.9×10−7) showed strongest evidence for association with AD+P when compared to controls. These findings warrant further investigation in larger, appropriately powered samples in which the presence of psychotic symptoms in AD has been well characterised.
PMCID: PMC3272435  PMID: 22005930
Alzheimer’s disease; psychosis; behavioural symptoms; genome-wide association study; genetic
12.  African Ancestry and Lung Function in Puerto Rican Children 
Puerto Ricans and African Americans share a significant proportion of African ancestry. Recent findings suggest that African ancestry influences lung function in African American adults.
To examine whether a greater proportion of African ancestry is associated with lower FEV1 and FVC in Puerto Rican children, independently of socioeconomic status (SES), healthcare access or key environmental/lifestyle (EL) factors.
Cross-sectional case-control study of 943 Puerto Rican children ages 6 to 14 years with (n=520) and without (n=423) asthma (defined as physician-diagnosed asthma and wheeze in the prior year) living in Hartford (CT, n=383) and San Juan (PR, n=560). We estimated the percentage of African racial ancestry in study participants using genome-wide genotypic data. We tested whether African ancestry is associated with FEV1 and FVC using linear regression. Multivariate models were adjusted for indicators of SES and healthcare, and selected EL exposures.
After adjustment for household income and other covariates, each 20% increment in African ancestry was significantly associated with lower pre-bronchodilator(BD) FEV1 (−105 ml, 95% confidence interval [CI] = −159 ml to −51 ml, P <0.001) and FVC (−133 ml, 95% CI −197 ml to −69 ml, P <0.001), and post-BD FEV1 (−152 ml, 95% CI=−210 ml to −94 ml, P <0.001) and FVC (−145 ml, 95% CI= −211 to −79 ml, P <0.001) in children with asthma. Similar but weaker associations were found for pre- and post-BD FEV1 (change for each 20% increment in African ancestry= −78 ml, 95% CI= −131 to −25 ml, P=0.004), and for post-BD FVC among children without asthma.
Genetic and/or EL factors correlated with African ancestry may influence childhood lung function in Puerto Ricans.
PMCID: PMC3367038  PMID: 22560959
ancestry; FEV1; FVC; Puerto Ricans; childhood
13.  Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis 
Whitcomb, David C. | LaRusch, Jessica | Krasinskas, Alyssa M. | Klei, Lambertus | Smith, Jill P. | Brand, Randall E. | Neoptolemos, John P. | Lerch, Markus M. | Tector, Matt | Sandhu, Bimaljit S. | Guda, Nalini M. | Orlichenko, Lidiya | Alkaade, Samer | Amann, Stephen T. | Anderson, Michelle A. | Baillie, John | Banks, Peter A. | Conwell, Darwin | Coté, Gregory A. | Cotton, Peter B. | DiSario, James | Farrer, Lindsay A. | Forsmark, Chris E. | Johnstone, Marianne | Gardner, Timothy B. | Gelrud, Andres | Greenhalf, William | Haines, Jonathan L. | Hartman, Douglas J. | Hawes, Robert A. | Lawrence, Christopher | Lewis, Michele | Mayerle, Julia | Mayeux, Richard | Melhem, Nadine M. | Money, Mary E. | Muniraj, Thiruvengadam | Papachristou, Georgios I. | Pericak-Vance, Margaret A. | Romagnuolo, Joseph | Schellenberg, Gerard D. | Sherman, Stuart | Simon, Peter | Singh, Vijay K. | Slivka, Adam | Stolz, Donna | Sutton, Robert | Weiss, Frank Ulrich | Wilcox, C. Mel | Zarnescu, Narcis Octavian | Wisniewski, Stephen R. | O'Connell, Michael R. | Kienholz, Michelle L. | Roeder, Kathryn | Barmada, M. Michael | Yadav, Dhiraj | Devlin, Bernie | Albert, Marilyn S. | Albin, Roger L. | Apostolova, Liana G. | Arnold, Steven E. | Baldwin, Clinton T. | Barber, Robert | Barnes, Lisa L. | Beach, Thomas G. | Beecham, Gary W. | Beekly, Duane | Bennett, David A. | Bigio, Eileen H. | Bird, Thomas D. | Blacker, Deborah | Boxer, Adam | Burke, James R. | Buxbaum, Joseph D. | Cairns, Nigel J. | Cantwell, Laura B. | Cao, Chuanhai | Carney, Regina M. | Carroll, Steven L. | Chui, Helena C. | Clark, David G. | Cribbs, David H. | Crocco, Elizabeth A. | Cruchaga, Carlos | DeCarli, Charles | Demirci, F. Yesim | Dick, Malcolm | Dickson, Dennis W. | Duara, Ranjan | Ertekin-Taner, Nilufer | Faber, Kelley M. | Fallon, Kenneth B. | Farlow, Martin R. | Ferris, Steven | Foroud, Tatiana M. | Frosch, Matthew P. | Galasko, Douglas R. | Ganguli, Mary | Gearing, Marla | Geschwind, Daniel H. | Ghetti, Bernardino | Gilbert, John R. | Gilman, Sid | Glass, Jonathan D. | Goate, Alison M. | Graff-Radford, Neill R. | Green, Robert C. | Growdon, John H. | Hakonarson, Hakon | Hamilton-Nelson, Kara L. | Hamilton, Ronald L. | Harrell, Lindy E. | Head, Elizabeth | Honig, Lawrence S. | Hulette, Christine M. | Hyman, Bradley T. | Jicha, Gregory A. | Jin, Lee-Way | Jun, Gyungah | Kamboh, M. Ilyas | Karydas, Anna | Kaye, Jeffrey A. | Kim, Ronald | Koo, Edward H. | Kowall, Neil W. | Kramer, Joel H. | Kramer, Patricia | Kukull, Walter A. | LaFerla, Frank M. | Lah, James J. | Leverenz, James B. | Levey, Allan I. | Li, Ge | Lin, Chiao-Feng | Lieberman, Andrew P. | Lopez, Oscar L. | Lunetta, Kathryn L. | Lyketsos, Constantine G. | Mack, Wendy J. | Marson, Daniel C. | Martin, Eden R. | Martiniuk, Frank | Mash, Deborah C. | Masliah, Eliezer | McKee, Ann C. | Mesulam, Marsel | Miller, Bruce L. | Miller, Carol A. | Miller, Joshua W. | Montine, Thomas J. | Morris, John C. | Murrell, Jill R. | Naj, Adam C. | Olichney, John M. | Parisi, Joseph E. | Peskind, Elaine | Petersen, Ronald C. | Pierce, Aimee | Poon, Wayne W. | Potter, Huntington | Quinn, Joseph F. | Raj, Ashok | Raskind, Murray | Reiman, Eric M. | Reisberg, Barry | Reitz, Christiane | Ringman, John M. | Roberson, Erik D. | Rosen, Howard J. | Rosenberg, Roger N. | Sano, Mary | Saykin, Andrew J. | Schneider, Julie A. | Schneider, Lon S. | Seeley, William W. | Smith, Amanda G. | Sonnen, Joshua A. | Spina, Salvatore | Stern, Robert A. | Tanzi, Rudolph E. | Trojanowski, John Q. | Troncoso, Juan C. | Tsuang, Debby W. | Valladares, Otto | Van Deerlin, Vivianna M. | Van Eldik, Linda J. | Vardarajan, Badri N. | Vinters, Harry V. | Vonsattel, Jean Paul | Wang, Li-San | Weintraub, Sandra | Welsh-Bohmer, Kathleen A. | Williamson, Jennifer | Woltjer, Randall L. | Wright, Clinton B. | Younkin, Steven G. | Yu, Chang-En | Yu, Lei
Nature genetics  2012;44(12):1349-1354.
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07.
PMCID: PMC3510344  PMID: 23143602
14.  Copy Number Variants for Schizophrenia and Related Psychotic Disorders in Oceanic Palau: Risk and Transmission in Extended Pedigrees 
Biological psychiatry  2011;70(12):1115-1121.
We report on copy number variants (CNVs) found in Palauan subjects ascertained for schizophrenia and related psychotic disorders in extended pedigrees in Palau. We compare CNVs found in this Oceanic population to those seen in other samples, typically of European ancestry. Assessing CNVs in Palauan extended pedigrees yields insight into the evolution of risk CNVs, such as how they arise, are transmitted, and are lost from populations by stochastic or selective processes, none of which is easily measured from case-control samples.
DNA samples from 197 subjects affected with schizophrenia and related psychotic disorders, 185 of their relatives, and 159 controls were successfully characterized for CNVs using Affymetrix Genomewide Human SNP Array 5.0.
CNVs thought to be associated with risk for schizophrenia and related disorders also occur in affected individuals in Palau, specifically 15q11.2 and 1q21.1 deletions, partial duplication of IL1RAPL1 (Xp21.3), and chromosome X duplications (Klinefleter’s syndrome). Partial duplication within A2BP1 appears to convey an 8-fold increased risk in males (95% CI, 0.8–84.4) but not females (OR=0.4, 95% CI, 0.03–4.9). Affected-only linkage analysis using this variant yields a LOD score of 3.5.
This study reveals CNVs that confer risk to schizophrenia and related psychotic disorders in Palau, most of which have been previously observed in samples of European ancestry. Only a few of these CNVs show evidence that they have existed for many generations, consistent with risk variants diminishing reproductive success.
PMCID: PMC3224197  PMID: 21982423
Schizophrenia; Psychotic disorders; Copy Number Variants (CNVs); A2BP1; IL1RAPL1; Palau
15.  Genome-wide Association Study of Alzheimer’s disease with Psychotic Symptoms 
Molecular psychiatry  2011;17(12):1316-1327.
Psychotic symptoms occur in approximately 40% of subjects with Alzheimer’s disease (AD) and are associated with more rapid cognitive decline and increased functional deficits. They show heritability up to 61% and have been proposed as a marker for a disease subtype suitable for gene mapping efforts. We undertook a combined analysis of three genome-wide association studies (GWAS) to identify loci that a) increase susceptibility to an AD and subsequent psychotic symptoms; or b) modify risk of psychotic symptoms in the presence of neurodegeneration caused by AD. 1299 AD cases with psychosis (AD+P), 735 AD cases without psychosis (AD−P) and 5659 controls were drawn from GERAD1, the NIA-LOAD family study and the University of Pittsburgh ADRC GWAS. Unobserved genotypes were imputed to provide data on > 1.8 million SNPs. Analyses in each dataset were completed comparing a) AD+P to AD−P cases, and b) AD+P cases with controls (GERAD1, ADRC only). Aside from the APOE locus, the strongest evidence for association was observed in an intergenic region on chromosome 4 (rs753129; ‘AD+PvAD−P’ P=2.85 × 10−7; ‘AD+PvControls’ P=1.11 × 10−4). SNPs upstream of SLC2A9 (rs6834555, P=3.0×10−7) and within VSNL1 (rs4038131, P=5.9×10−7) showed strongest evidence for association with AD+P when compared to controls. These findings warrant further investigation in larger, appropriately powered samples in which the presence of psychotic symptoms in AD has been well characterised.
PMCID: PMC3272435  PMID: 22005930
Alzheimer’s disease; psychosis; behavioural symptoms; genome-wide association study; genetic
16.  Common genetic variants, acting additively, are a major source of risk for autism 
Molecular Autism  2012;3:9.
Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.
By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.
By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.
Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.
PMCID: PMC3579743  PMID: 23067556
Narrow-sense heritability; Multiplex; Simplex; Quantitative genetics
17.  Amino Acid Position 11 of HLA-DRβ1 is a Major Determinant of Chromosome 6p Association with Ulcerative Colitis 
Genes and Immunity  2011;13(3):245-252.
The major histocompatibility complex (MHC) on chromosome 6p is an established risk locus for ulcerative colitis (UC) and Crohn’s disease (CD). We aimed to better define MHC association signals in UC and CD by combining data from dense single nucleotide polymorphism (SNP) genotyping and from imputation of classical HLA types, their constituent SNPs and corresponding amino acids in 562 UC, 611 CD, and 1,428 control subjects. Univariate and multivariate association analyses were performed, controlling for ancestry. In univariate analyses, absence of the rs9269955 C allele was strongly associated with risk for UC (P = 2.67×10−13). rs9269955 is a SNP in the codon for amino acid position 11 of HLA-DRβ1, located in the P6 pocket of the HLA-DR antigen binding cleft. This amino acid position was also the most significantly UC-associated amino acid in omnibus tests (P = 2.68×10−13). Multivariate modeling identified rs9269955-C and 13 other variants in best predicting UC versus control status. In contrast, there was only suggestive association evidence between the MHC and CD. Taken together, these data demonstrate that variation at HLA-DRβ1, amino acid 11 in the P6 pocket of the HLA-DR complex antigen binding cleft is a major determinant of chromosome 6p association with ulcerative colitis.
PMCID: PMC3341846  PMID: 22170232
inflammatory bowel disease genetics; major histocompatibility complex; ulcerative colitis
18.  Individual common variants exert weak effects on the risk for autism spectrum disorderspi 
Anney, Richard | Klei, Lambertus | Pinto, Dalila | Almeida, Joana | Bacchelli, Elena | Baird, Gillian | Bolshakova, Nadia | Bölte, Sven | Bolton, Patrick F. | Bourgeron, Thomas | Brennan, Sean | Brian, Jessica | Casey, Jillian | Conroy, Judith | Correia, Catarina | Corsello, Christina | Crawford, Emily L. | de Jonge, Maretha | Delorme, Richard | Duketis, Eftichia | Duque, Frederico | Estes, Annette | Farrar, Penny | Fernandez, Bridget A. | Folstein, Susan E. | Fombonne, Eric | Gilbert, John | Gillberg, Christopher | Glessner, Joseph T. | Green, Andrew | Green, Jonathan | Guter, Stephen J. | Heron, Elizabeth A. | Holt, Richard | Howe, Jennifer L. | Hughes, Gillian | Hus, Vanessa | Igliozzi, Roberta | Jacob, Suma | Kenny, Graham P. | Kim, Cecilia | Kolevzon, Alexander | Kustanovich, Vlad | Lajonchere, Clara M. | Lamb, Janine A. | Law-Smith, Miriam | Leboyer, Marion | Le Couteur, Ann | Leventhal, Bennett L. | Liu, Xiao-Qing | Lombard, Frances | Lord, Catherine | Lotspeich, Linda | Lund, Sabata C. | Magalhaes, Tiago R. | Mantoulan, Carine | McDougle, Christopher J. | Melhem, Nadine M. | Merikangas, Alison | Minshew, Nancy J. | Mirza, Ghazala K. | Munson, Jeff | Noakes, Carolyn | Nygren, Gudrun | Papanikolaou, Katerina | Pagnamenta, Alistair T. | Parrini, Barbara | Paton, Tara | Pickles, Andrew | Posey, David J. | Poustka, Fritz | Ragoussis, Jiannis | Regan, Regina | Roberts, Wendy | Roeder, Kathryn | Roge, Bernadette | Rutter, Michael L. | Schlitt, Sabine | Shah, Naisha | Sheffield, Val C. | Soorya, Latha | Sousa, Inês | Stoppioni, Vera | Sykes, Nuala | Tancredi, Raffaella | Thompson, Ann P. | Thomson, Susanne | Tryfon, Ana | Tsiantis, John | Van Engeland, Herman | Vincent, John B. | Volkmar, Fred | Vorstman, JAS | Wallace, Simon | Wing, Kirsty | Wittemeyer, Kerstin | Wood, Shawn | Zurawiecki, Danielle | Zwaigenbaum, Lonnie | Bailey, Anthony J. | Battaglia, Agatino | Cantor, Rita M. | Coon, Hilary | Cuccaro, Michael L. | Dawson, Geraldine | Ennis, Sean | Freitag, Christine M. | Geschwind, Daniel H. | Haines, Jonathan L. | Klauck, Sabine M. | McMahon, William M. | Maestrini, Elena | Miller, Judith | Monaco, Anthony P. | Nelson, Stanley F. | Nurnberger, John I. | Oliveira, Guiomar | Parr, Jeremy R. | Pericak-Vance, Margaret A. | Piven, Joseph | Schellenberg, Gerard D. | Scherer, Stephen W. | Vicente, Astrid M. | Wassink, Thomas H. | Wijsman, Ellen M. | Betancur, Catalina | Buxbaum, Joseph D. | Cook, Edwin H. | Gallagher, Louise | Gill, Michael | Hallmayer, Joachim | Paterson, Andrew D. | Sutcliffe, James S. | Szatmari, Peter | Vieland, Veronica J. | Hakonarson, Hakon | Devlin, Bernie
Human Molecular Genetics  2012;21(21):4781-4792.
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.
PMCID: PMC3471395  PMID: 22843504
19.  No association of psychosis in Alzheimer disease with neurodegenerative pathway genes 
Neurobiology of aging  2010;32(3):555.e9-555.e11.
Psychotic symptoms occur in approximately 40% of subjects with Alzheimer disease (AD with Psychosis, AD+P) and identify a subgroup with more rapid cognitive decline. We evaluated in 867 AD subjects the association of AD+P with genes which may modify the pathologic process via effects on the accumulation of amyloid beta (Aβ) protein and/or hyperphosphorylated microtubule-associated protein tau (MAPT): amyloid precursor protein (APP), beta-site amyloid precursor protein cleaving enzyme (BACE1), sortilin-related receptor (SORL1), and MAPT. Each gene was thoroughly interrogated with tag SNPs, and gene-based tests were used to enhance power. We found no association of these genes with AD+P.
PMCID: PMC3065549  PMID: 21093110
Alzheimer's disease; psychosis; amyloid precursor protein (APP); beta-site amyloid precursor protein cleaving enzyme (BACE1); sortilin-related receptor (SORL1); microtubule-associated protein tau (MAPT); and Apolipoprotein E e4 (APOE e4)
20.  Principal Components of Heritability From Neurocognitive Domains Differ Between Families With Schizophrenia and Control Subjects 
Schizophrenia Bulletin  2012;39(2):464-471.
Objective: Various measures of neurocognitive function show mean differences among individuals with schizophrenia (SZ), their relatives, and population controls. We use eigenvector transformations that maximize heritability of multiple neurocognitive measures, namely principal components of heritability (PCH), and evaluate how they distribute in SZ families and controls. Methods: African-Americans with SZ or schizoaffective disorder (SZA) (n = 514), their relatives (n = 1092), and adult controls (n = 300) completed diagnostic interviews and computerized neurocognitive tests. PCH were estimated from 9 neurocognitive domains. Three PCH, PCH1–PCH3, were modeled to determine if status (SZ, relative, and control), other psychiatric covariates, and education were significant predictors of mean values. A small-scale linkage analysis was also conducted in a subset of the sample. Results: PCH1, PCH2, and PCH3 account for 72% of the genetic variance. PCH1 represents 8 of 9 neurocognitive domains, is most highly correlated with spatial processing and emotion recognition, and has unadjusted heritability of 68%. The means for PCH1 differ significantly among SZ, their relatives, and controls. PCH2, orthogonal to PCH1, is most closely correlated with working memory and has an unadjusted heritability of 45%. Mean PCH2 is different only between SZ families and controls. PCH3 apparently represents a heritable component of neurocognition similar across the 3 diagnostic groups. No significant linkage evidence to PCH1–PCH3 or individual neurocognitive measures was discovered. Conclusions: PCH1 is highly heritable and genetically correlated with SZ. It should prove useful in future genetic analyses. Mean PCH2 differentiates SZ families and controls but not SZ and unaffected family members.
PMCID: PMC3576168  PMID: 22234486
schizophrenia; cognition; heritability; principal components; linkage
21.  Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy 
Nature genetics  2011;43(7):699-705.
Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common being Alzheimer’s disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 PSP cases and 3,247 controls (Stage 1) followed up by a second stage where 1,051 cases and 3,560 controls were genotyped for Stage 1 SNPs that yielded P ≤ 10−3. We found significant novel signals (P < 5 × 10−8) associated with PSP risk at STX6, EIF2AK3, and MOBP. We confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, for the endoplasmic reticulum unfolded protein response, and for a myelin structural component.
PMCID: PMC3125476  PMID: 21685912
22.  Consanguinity and increased risk for schizophrenia in Egypt 
Schizophrenia research  2010;120(1-3):108-112.
Consanguinity has been suggested as a risk factor for psychsoses in some Middle Eastern countries, but adequate control data are unavailable. Our recent studies in Egypt have shown elevated parental consanguinity rates among patients with bipolar I disorder (BP1), compared with controls. We have now extended our analyses to Schizophrenia (SZ) in the same population.
A case-control study was conducted at Mansoura University Hospital, Mansoura, Egypt (SZ, n = 75; controls, n = 126, and their available parents). The prevalence of consanguinity was estimated from family history data (‘self report’), followed by DNA analysis using short tandem repeat polymorphisms (STRPs, n = 63) (‘DNA-based’ rates).
Self reported consanguinity was significantly elevated among the patients (SZ: 46.6%, controls: 19.8%, OR 3.53, 95% CI 1.88, 6.64; p = 0.000058, 1 d.f.). These differences were confirmed using DNA based estimates for coefficients of inbreeding (inbreeding coefficients as means ± standard error, cases: 0.058 ± 0.007, controls: 0.022 ± 0.003).
Consanguinity rates are signifcantly elevated among Egyptian SZ patients in the Nile delta region. The associations are similar to those observed with BP1 in our earlier study. If replicated, the substantial risk associated with consanguinity raises public health concerns. They may also pave the way for gene mapping studies.
PMCID: PMC2900407  PMID: 20435442
Schizophrenia; consanguinity; DNA; genetic; association; inbreeding
23.  Candidate Gene Analysis of Femoral Neck Trabecular and Cortical Volumetric Bone Mineral Density in Older Men 
In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153388  PMID: 19619005
osteoporosis; Genetics; BMD; men; qCT
24.  Functional Impact of Global Rare Copy Number Variation in Autism Spectrum Disorder 
Pinto, Dalila | Pagnamenta, Alistair T. | Klei, Lambertus | Anney, Richard | Merico, Daniele | Regan, Regina | Conroy, Judith | Magalhaes, Tiago R. | Correia, Catarina | Abrahams, Brett S. | Almeida, Joana | Bacchelli, Elena | Bader, Gary D. | Bailey, Anthony J. | Baird, Gillian | Battaglia, Agatino | Berney, Tom | Bolshakova, Nadia | Bölte, Sven | Bolton, Patrick F. | Bourgeron, Thomas | Brennan, Sean | Brian, Jessica | Bryson, Susan E. | Carson, Andrew R. | Casallo, Guillermo | Casey, Jillian | Cochrane, Lynne | Corsello, Christina | Crawford, Emily L. | Crossett, Andrew | Dawson, Geraldine | de Jonge, Maretha | Delorme, Richard | Drmic, Irene | Duketis, Eftichia | Duque, Frederico | Estes, Annette | Farrar, Penny | Fernandez, Bridget A. | Filipa, Ana | Folstein, Susan E. | Fombonne, Eric | Freitag, Christine M. | Gilbert, John | Gillberg, Christopher | Glessner, Joseph T. | Goldberg, Jeremy | Green, Andrew | Green, Jonathan | Guter, Stephen J. | Hakonarson, Hakon | Heron, Elizabeth A. | Hill, Matthew | Holt, Richard | Howe, Jennifer L. | Hughes, Gillian | Hus, Vanessa | Igliozzi, Roberta | Kim, Cecilia | Klauck, Sabine M. | Kolevzon, Alexander | Korvatska, Olena | Kustanovich, Vlad | Lajonchere, Clara M. | Lamb, Janine A. | Laskawiec, Magdalena | Leboyer, Marion | Le Couteur, Ann | Leventhal, Bennett L. | Lionel, Anath C. | Liu, Xiao-Qing | Lord, Catherine | Lotspeich, Linda | Lund, Sabata C. | Maestrini, Elena | Mahoney, William | Mantoulan, Carine | Marshall, Christian R. | McConachie, Helen | McDougle, Christopher J. | McGrath, Jane | McMahon, William M. | Merikangas, Alison | Migita, Ohsuke | Minshew, Nancy J. | Mirza, Ghazala K. | Munson, Jeff | Nelson, Stanley F. | Noakes, Carolyn | Noor, Abdul | Nygren, Gudrun | Oliveira, Guiomar | Papanikolaou, Katerina | Parr, Jeremy R. | Parrini, Barbara | Paton, Tara | Pickles, Andrew | Pilorge, Marion | Piven, Joseph | Ponting, Chris P. | Posey, David J. | Poustka, Annemarie | Poustka, Fritz | Prasad, Aparna | Ragoussis, Jiannis | Renshaw, Katy | Rickaby, Jessica | Roberts, Wendy | Roeder, Kathryn | Roge, Bernadette | Rutter, Michael L. | Bierut, Laura J. | Rice, John P. | Consortium, SAGE | Salt, Jeff | Sansom, Katherine | Sato, Daisuke | Segurado, Ricardo | Senman, Lili | Shah, Naisha | Sheffield, Val C. | Soorya, Latha | Sousa, Inês | Stein, Olaf | Stoppioni, Vera | Strawbridge, Christina | Tancredi, Raffaella | Tansey, Katherine | Thiruvahindrapduram, Bhooma | Thompson, Ann P. | Thomson, Susanne | Tryfon, Ana | Tsiantis, John | Van Engeland, Herman | Vincent, John B. | Volkmar, Fred | Wallace, Simon | Wang, Kai | Wang, Zhouzhi | Wassink, Thomas H. | Webber, Caleb | Wing, Kirsty | Wittemeyer, Kerstin | Wood, Shawn | Wu, Jing | Yaspan, Brian L. | Zurawiecki, Danielle | Zwaigenbaum, Lonnie | Buxbaum, Joseph D. | Cantor, Rita M. | Cook, Edwin H. | Coon, Hilary | Cuccaro, Michael L. | Devlin, Bernie | Ennis, Sean | Gallagher, Louise | Geschwind, Daniel H. | Gill, Michael | Haines, Jonathan L. | Hallmayer, Joachim | Miller, Judith | Monaco, Anthony P. | Nurnberger, John I. | Paterson, Andrew D. | Pericak-Vance, Margaret A. | Schellenberg, Gerard D. | Szatmari, Peter | Vicente, Astrid M. | Vieland, Veronica J. | Wijsman, Ellen M. | Scherer, Stephen W. | Sutcliffe, James S. | Betancur, Catalina
Nature  2010;466(7304):368-372.
The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviors1. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability (ID)2. While ASDs are known to be highly heritable (~90%)3, the underlying genetic determinants are still largely unknown. Here, we analyzed the genome-wide characteristics of rare (<1% frequency) copy number variation (CNV) in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic CNVs (1.19 fold, P= 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P= 3.4×10−4). Among the CNVs, there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes like SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene-sets involved in cellular proliferation, projection and motility, and GTPase/Ras signaling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
PMCID: PMC3021798  PMID: 20531469
25.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes 
Nature  2009;459(7246):569-573.
Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1–4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5–9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10−3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10−3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10−6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.
PMCID: PMC2925224  PMID: 19404257

Results 1-25 (27)