PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (116)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  A volumetric comparison of the insular cortex and its subregions in primates 
Journal of human evolution  2013;64(4):263-279.
The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body’s homeostatic state. We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent = 1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent = 1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee.
doi:10.1016/j.jhevol.2012.12.003
PMCID: PMC3756831  PMID: 23466178
Allometry; Brain; Evolution; Frontoinsular cortex; Hominoids
2.  Histone Deacetylase 2 in the Mouse Hippocampus: Attenuation of Age-Related Increase by Caloric Restriction 
Current Alzheimer research  2013;10(8):868-876.
The aging process in the hippocampus is associated with aberrant epigenetic marks, such as DNA methylation and histone tail alterations. Recent evidence suggests that caloric restriction (CR) can potentially delay the aging process, while upregulation of antioxidants may also have a beneficial effect in this respect. We have recently observed that CR attenuates age-related changes in the levels of the epigenetic molecules DNA methyltransferase 3a, 5-methylcytidine (5-mC) and 5-hydroxymethylcytosine in the mouse hippocampus while overexpression of the antioxidant Cu/Zn superoxide dismutase 1 (SOD1) does not. However, the impact of aging on the levels of histone-modifying enzymes such as histone deacetylase 2 (HDAC2) in the hippocampus has not been studied in much detail. Here, we investigated immunoreactivity (IR) of HDAC2 in three subregions of the hippocampus (dentate gyrus, CA3 and CA1-2) of mice taken from large cohorts of aging wild-type and transgenic mice overexpressing normal human SOD1, which were kept under normal diet or CR from weaning onwards. Independent from the genotype, aging (between 12 and 24 months) increased levels of HDAC2 IR in the hippocampus. Moreover, CR prevented this age-related increase, particularly in the CA3 and CA1-2 subregions, while SOD1 overexpression did not. Quantitative image analyses showed that HDAC2 IR correlated positively with 5-mC IR while these markers were shown to colocalize in the nucleus of hippocampal cells. Together with recent literature reports, these findings suggest that altered levels of epigenetic regulatory proteins including HDAC2 regulate age-related changes in the mouse hippocampus and that CR may prevent these age-related changes.
PMCID: PMC3966721  PMID: 24093534
Aging; epigenesis; histone deacetylase 2 (HDAC2); caloric restriction; hippocampus
3.  Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients 
Neurobiology of aging  2013;34(9):2091-2099.
Epigenetic dysregulation of gene expression is thought to be critically involved in the pathophysiology of Alzheimer’s disease (AD). Recent studies indicate that DNA methylation and DNA hydroxymethylation are 2 important epigenetic mechanisms that regulate gene expression in the aging brain. However, very little is known about the levels of markers of DNA methylation and hydroxymethylation in the brains of patients with AD, the cell-type specificity of putative AD-related alterations in these markers, as well as the link between epigenetic alterations and the gross pathology of AD. The present quantitative immunohistochemical study investigated the levels of the 2 most important markers of DNA methylation and hydroxymethylation, that is, 5-methylcytidine (5-mC) and 5-hydroxymethylcytidine (5-hmC), in the hippocampus of AD patients (n = 10) and compared these to non demented, age-matched controls (n = 10). In addition, the levels of 5-hmC in the hippocampus of a pair of monozygotic twins discordant for AD were assessed. The levels of 5-mC and 5-hmC were furthermore analyzed in a cell-type and hippocampal subregion–specific manner, and were correlated with amyloid plaque load and neurofibrillary tangle load. The results showed robust decreases in the hippocampal levels of 5-mC and 5-hmC in AD patients (19.6% and 20.2%, respectively). Similar results were obtained for the twin with AD when compared to the non-demented co-twin. Moreover, levels of 5-mC as well as the levels of 5-hmC showed a significant negative correlation with amyloid plaque load in the hippocampus (rp = −0.539, p = 0.021 for 5-mC and rp = −0.558, p = 0.016 for 5-hmC). These human postmortem results thus strengthen the notion that AD is associated with alterations in DNA methylation and hydroxymethylation, and provide a basis for further epigenetic studies identifying the exact genetic loci with aberrant epigenetic signatures.
doi:10.1016/j.neurobiolaging.2013.02.021
PMCID: PMC3955118  PMID: 23582657
Alzheimer’s disease; Epigenetics; DNA methylation; DNA hydroxymethylation; Amyloid
4.  Genotype-independent decrease in plasma dopamine beta-hydroxylase activity in Alzheimer’s disease 
The noradrenergic system is involved in the etiology and progression of Alzheimer’s disease (AD) but its role is still unclear. Dopamine beta-hydroxylase (DBH) as a catecholamine-synthesizing enzyme plays a central role in noradrenaline (NA) synthesis and turnover. Plasma DBH (pDBH) activity shows wide inheritable interindividual variability that is under genetic control. The aim of this study was to determine pDBH activity, DBH (C-970T; rs1611115) and DBH (C1603T; rs6271) gene polymorphisms in 207 patients with AD and in 90 healthy age-matched controls. Plasma DBH activity was lower, particularly in the early stage of AD, compared to values in middle and late stages of the disease, as well as to control values. Two-way ANOVA revealed significant effect of both diagnosis and DBH (C-970T) or DBH (C1603T) genotypes on pDBH activity, but without significant diagnosis×genotype interaction. No association was found between AD and DBH C-970T (OR=1.08, 95% CI 1.13–4.37; p=0.779) and C1603T (OR=0.89; 95% CI 0.36–2.20; p=0.814) genotypes controlled for age, gender, and ApoE4 allele. The decrease in pDBH activity, found in early phase of AD suggests that alterations in DBH activity represent a compensatory mechanism for the loss of noradrenergic neurons, and that treatment with selective NA reuptake inhibitors may be indicated in early stages of AD to compensate for loss of noradrenergic activity in the locus coeruleus.
doi:10.1016/j.pnpbp.2013.02.002
PMCID: PMC3952071  PMID: 23416088
Alzheimer’s disease; Cognitive decline; DBH gene polymorphisms; Dopamine beta-hydroxylase; Plasma DBH activity
5.  Lamination of the Lateral Geniculate Nucleus of Catarrhine Primates 
Brain, behavior and evolution  2013;81(2):93-108.
The lateral geniculate nucleus (LGN) of catarrhines – with the exception of gibbons – is typically described as a six-layered structure, comprised of two ventral magnocellular layers, and four dorsal parvocellular layers. The parvocellular layers of the LGN are involved in color vision. Therefore, it is hypothesized that a six-layered LGN is a shared-derived trait among catarrhines. This might suggest that in gibbons the lack of further subdivisions of the parvocellular layers is a recent change, and could be related to specializations of visual information processing in this taxon. To address these hypotheses, the lamination of the LGN was investigated in a range of catarrhine species, including several taxa not previously described, and the evolution of the LGN was reconstructed using phylogenetic information. The findings indicate that while all catarrhine species have four parvocellular leaflets, two main patterns of LGN parvocellular lamination occur: two undivided parvocellular layers in some species, and four parvocellular leaflets (with occasional subleaflets) in other species. LGN size was not found to be related to lamination pattern. Both patterns were found to occur in divergent clades, which is suggestive of homoplasy within the catarrhines in LGN morphology.
doi:10.1159/000346495
PMCID: PMC3741618  PMID: 23467282
evolution; phylogeny; catarrhines; primates; vision; lateral geniculate nucleus; parvocellular
6.  New insights into the classification and nomenclature of cortical GABAergic interneurons 
Nature reviews. Neuroscience  2013;14(3):202-216.
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.
doi:10.1038/nrn3444
PMCID: PMC3619199  PMID: 23385869
7.  Cognition–Emotion Integration in the Anterior Insular Cortex 
Cerebral Cortex (New York, NY)  2012;23(1):20-27.
Both cognitive and affective processes require mental resources. However, it remains unclear whether these 2 processes work in parallel or in an integrated fashion. In this functional magnetic resonance imaging study, we investigated their interaction using an empathy-for-pain paradigm, with simultaneous manipulation of cognitive demand of the tasks and emotional valence of the stimuli. Eighteen healthy adult participants viewed photographs showing other people's hands and feet in painful or nonpainful situations while performing tasks of low (body part judgment) and high (laterality judgment) cognitive demand. Behavioral data showed increased reaction times and error rates for painful compared with nonpainful stimuli under laterality judgment relative to body part judgment, indicating an interaction between cognitive demand and stimulus valence. Imaging analyses showed activity in bilateral anterior insula (AI) and primary somatosensory cortex (SI), but not posterior insula, for main effects of cognitive demand and stimulus valence. Importantly, cognitive demand and stimulus valence showed a significant interaction in AI, SI, and regions of the frontoparietal network. These results suggest that cognitive and emotional processes at least partially share common brain networks and that AI might serve as a key node in a brain network subserving cognition–emotion integration.
doi:10.1093/cercor/bhr367
PMCID: PMC3513949  PMID: 22275476
cognition; emotion; empathy; fMRI; insula
8.  Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates 
Neuropeptide Y (NPY) plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer's disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans). Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv) and NPY-immunoreactive varicosity density to neuron density (Vv/Nv), as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt) of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.
doi:10.3389/fnhum.2014.00101
PMCID: PMC3937817  PMID: 24616688
NPY; Broca's area; Wernicke's area; primate evolution
9.  Comparison of two commercial enzyme-linked immunosorbent assays for cerebrospinal fluid measurement of amyloid β1-42 and total tau 
Translational neuroscience  2013;4(2):10.2478/s13380-013-0123-4.
Amyloid β1-42 (Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) are the main cerebrospinal fluid (CSF) biomarkers for early diagnosis of Alzheimer’s disease (AD). Detection of AD is critically important in view of the growing number of potential new drugs that may influence the course of the disease in its early phases. However, cut-off levels for these CSF biomarkers have not yet been established. Variability in absolute concentrations of AD biomarkers is high among studies and significant differences were noticed even within the same datasets. Variability in biomarkers levels in these assays may be due to many aspects of operating procedures. Standardization of pre-analytical and analytical procedures in collection, treatment, and storage of CSF samples is crucial because differences in sample handling can drastically influence results. Multicenter studies showed that usage of ELISA kits from different manufacturers also affects outcome. So far only very few studies tested the efficiency of ELISA kits produced by different vendors. In this study, the performance of Innogenetics (Gent, Belgium) and Invitrogen (Camarillo, CA, USA) ELISA kits for t-tau and Aβ1-42 was tested. Passing-Bablok analysis showed significant differences between Invitrogen and Innogenetics ELISA methods, making it impossible to use them interchangeably.
doi:10.2478/s13380-013-0123-4
PMCID: PMC3873720  PMID: 24376914
Alzheimer’s disease; Amyloid β1-42; Biomarkers; Cerebrospinal fluid; ELISA; Standardization; Tau proteins
10.  Planum Temporale Asymmetries Correlate with Corpus Callosum Axon Fiber Density in Chimpanzees (Pan troglodytes) 
Behavioural brain research  2012;234(2):248-254.
The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size.
doi:10.1016/j.bbr.2012.06.030
PMCID: PMC3422564  PMID: 22766214
Chimpanzees; brain asymmetry; corpus callosum; axon fiber density; planum temporale
11.  Anterior insular cortex is necessary for empathetic pain perception 
Brain  2012;135(9):2726-2735.
Empathy refers to the ability to perceive and share another person’s affective state. Much neuroimaging evidence suggests that observing others’ suffering and pain elicits activations of the anterior insular and the anterior cingulate cortices associated with subjective empathetic responses in the observer. However, these observations do not provide causal evidence for the respective roles of anterior insular and anterior cingulate cortices in empathetic pain. Therefore, whether these regions are ‘necessary’ for empathetic pain remains unknown. Herein, we examined the perception of others’ pain in patients with anterior insular cortex or anterior cingulate cortex lesions whose locations matched with the anterior insular cortex or anterior cingulate cortex clusters identified by a meta-analysis on neuroimaging studies of empathetic pain perception. Patients with focal anterior insular cortex lesions displayed decreased discrimination accuracy and prolonged reaction time when processing others’ pain explicitly and lacked a typical interference effect of empathetic pain on the performance of a pain-irrelevant task. In contrast, these deficits were not observed in patients with anterior cingulate cortex lesions. These findings reveal that only discrete anterior insular cortex lesions, but not anterior cingulate cortex lesions, result in deficits in explicit and implicit pain perception, supporting a critical role of anterior insular cortex in empathetic pain processing. Our findings have implications for a wide range of neuropsychiatric illnesses characterized by prominent deficits in higher-level social functioning.
doi:10.1093/brain/aws199
PMCID: PMC3437027  PMID: 22961548
anterior cingulate cortex; anterior insular cortex; empathy; meta-analysis; necessity
12.  Amyloid precursor protein (APP) regulates synaptic structure and function 
The amyloid precursor protein (APP) plays a critical role in Alzheimer’s disease (AD) pathogenesis. APP is proteolytically cleaved by β- and γ-secretases to generate the amyloid β-protein (Aβ), the core protein component of senile plaques in AD. It is also cleaved by α-secretase to release the large soluble APP (sAPP) luminal domain that has been shown to exhibit trophic properties. Increasing evidence points to the development of synaptic deficits and dendritic spine loss prior to deposition of amyloid in transgenic mouse models that overexpress APP and Aβ peptides. The consequence of loss of APP, however, is unsettled. In this study, we investigated whether APP itself plays a role in regulating synaptic structure and function using an APP knock-out (APP−/−) mouse model. We examined dendritic spines in primary cultures of hippocampal neurons and CA1 neurons of hippocampus from APP−/− mice. In the cultured neurons, there was a significant decrease (~35%) in spine density in neurons derived from APP−/− mice compared to littermate control neurons that were partially restored with sAPPα-conditioned medium. In APP−/− mice in vivo, spine numbers were also significantly reduced but by a smaller magnitude (~15%). Furthermore, apical dendritic length and dendritic arborization were markedly diminished in hippocampal neurons. These abnormalities in neuronal morphology were accompanied by reduction in long-term potentiation. Strikingly, all these changes in vivo were only seen in mice that were 12-15 months in age but not in younger animals. We propose that APP, specifically sAPP, is necessary for the maintenance of dendritic integrity in the hippocampus in an age-associated manner. Finally, these age-related changes may contribute to Alzheimer’s changes independent of Aβ-mediated synaptic toxicity.
doi:10.1016/j.mcn.2012.07.009
PMCID: PMC3538857  PMID: 22884903
Alzheimer’s disease; amyloid precursor protein; knock-out mice; extracellular domain; soluble amyloid β; synapse
14.  Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices 
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning.
doi:10.1523/JNEUROSCI.2581-12.2012
PMCID: PMC3485081  PMID: 23035077
15.  Deletion of the amyloid precursor-like protein 2 (APLP2) does not affect hippocampal neuron morphology or function 
Amyloid precursor protein (APP), the parent molecule to amyloid β peptide, is part of larger gene family with two mammalian homologues, amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2). Initial knock-out studies demonstrated that while single APP family gene deletions produced relatively mild phenotypes, deficiency of APLP2 and one other member of the gene family resulted in perinatal lethality, suggesting vital roles masked by functional redundancy of the other homologues. Because of the importance of APP in Alzheimer’s disease, the vast majority of studies to date have concentrated on the neuronal functions of APP, leaving limited data on its homologues. APLP2 is of particular interest as it contains high sequence homology with APP, is processed similarly, is expressed in overlapping spatial and temporal patterns, and is obligatory for lethality when combined with deficiency of either APLP1 or APP but does not contain the toxic amyloid β sequence. Here we sought to test the role of APLP2 on neuronal structure and function using a combined approach involving in vitro and in vivo techniques in young and aged animals. Surprisingly, we found that unlike APP, APLP2 appears not to be essential for maintenance of dendritic structure, spiny density, or synaptic function. Thus, there is clear divergence in the functional redundancy between APP and APLP2.
doi:10.1016/j.mcn.2012.02.001
PMCID: PMC3348437  PMID: 22353605
amyloid precursor-like protein 2; amyloid precursor protein; Alzheimer’s disease; synaptic plasticity; dendritic spine; synapse
16.  Association of ApoE and LRP mRNA levels with dementia and AD neuropathology 
Neurobiology of Aging  2011;33(3):628.e1-628.e14.
Inheritance of the ε4 allele of ApoE is the only confirmed and consistently replicated risk factor for late onset AD. ApoE is also a key ligand for LRP, a major neuronal LDL receptor. Despite the considerable converging evidence that implicates ApoE and LRP in the pathogenesis of AD, the precise mechanism by which ApoE and LRP modulate the risk for AD remains elusive. Moreover, studies investigating expression of ApoE and LRP in AD brain have reported variable and contradictory results. To overcome these inconsistencies, we studied the mRNA expression of ApoE and LRP in the postmortem brain of persons who died at different stages of dementia and AD-associated neuropathology relative to controls by qPCR and Western blotting. Clinical dementia rating scores were used as a measure of dementia severity, whereas, Braak neuropathological staging and neuritic plaque density were used as indices of the neuropathological progression of AD. ApoE and LRP mRNA expression was significantly elevated in the postmortem inferior temporal gyrus (area 20) and the hippocampus from individuals with dementia compared to those with intact cognition. In addition to their strong association with the progression of cognitive dysfunction, LRP and ApoE mRNA levels were also positively correlated with increasing neuropathological hallmarks of AD. Additionally, Western blot analysis of ApoE protein expression in the hippocampus showed that the differential expression observed at the transcriptional level is also reflected at the protein level. Given the critical role played by LRP and ApoE in Aβ and cholesterol trafficking, increased expression of LRP and ApoE may not only disrupt cholesterol homeostasis but may also contribute to some of the neurobiological features of AD, including plaque deposition.
doi:10.1016/j.neurobiolaging.2011.04.010
PMCID: PMC3234309  PMID: 21676498
17.  Spontaneous brain activity relates to autonomic arousal 
Although possible sources and functions of the resting state networks (RSN) of the brain have been proposed, most evidence relies on circular logic and reverse inference. We propose that autonomic arousal provides an objective index of psychophysiological states during rest that may also function as a driving source of the activity and connectivity of RSN. Recording blood oxygenation level-dependent (BOLD) signal using functional magnetic resonance imaging and skin conductance simultaneously during rest in human subjects, we found that the spontaneous fluctuations of BOLD signals in key nodes of RSN are associated with changes in non-specific skin conductance response, a sensitive psychophysiological index of autonomic arousal. Our findings provide evidence of an important role for the autonomic nervous system to the spontaneous activity of the brain during ‘rest’.
doi:10.1523/JNEUROSCI.1172-12.2012
PMCID: PMC3435430  PMID: 22895703
resting-state functional connectivity MRI; autonomic arousal; skin conductance response; interoception; consciousness
18.  Morphologic Evidence for Spatially Clustered Spines in Apical Dendrites of Monkey Neocortical Pyramidal Cells 
The Journal of comparative neurology  2012;520(13):2888-2902.
The general organization of neocortical connectivity in rhesus monkey is relatively well understood. However, mounting evidence points to an organizing principle that involves clustered synapses at the level of individual dendrites. Several synaptic plasticity studies have reported cooperative interaction between neighboring synapses on a given dendritic branch, which may potentially induce synapse clusters. Additionally, theoretical models have predicted that such cooperativity is advantageous, in that it greatly enhances a neuron’s computational repertoire. However, largely because of the lack of sufficient morphologic data, the existence of clustered synapses in neurons on a global scale has never been established. The majority of excitatory synapses are found within dendritic spines. In this study, we demonstrate that spine clusters do exist on pyramidal neurons by analyzing the three-dimensional locations of ~40,000 spines on 280 apical dendritic branches in layer III of the rhesus monkey prefrontal cortex. By using clustering algorithms and Monte Carlo simulations, we quantify the probability that the observed extent of clustering does not occur randomly. This provides a measure that tests for spine clustering on a global scale, whenever high-resolution morphologic data are available. Here we demonstrate that spine clusters occur significantly more frequently than expected by pure chance and that spine clustering is concentrated in apical terminal branches. These findings indicate that spine clustering is driven by systematic biological processes. We also found that mushroom-shaped and stubby spines are predominant in clusters on dendritic segments that display prolific clustering, independently supporting a causal link between spine morphology and synaptic clustering.
doi:10.1002/cne.23070
PMCID: PMC3573331  PMID: 22315181
clustering; dendritic spines; plasticity; morphology; image analysis
19.  Human fetal tau protein isoform: Possibilities for Alzheimer’s disease treatment 
While early 1990s reports showed the phosphorylation pattern of fetal tau protein to be similar to that of tau in paired helical filaments (PHF) in Alzheimer’s disease (AD), neither the molecular mechanisms of the transient developmental hyperphosphorylation of tau nor reactivation of the fetal plasticity due to re-expression of fetal protein kinases in the aging and AD human brain have been sufficiently investigated. Here, we summarize the current knowledge on fetal tau, adding new data on the specific patterns of tau protein and mRNA expression in the developing human brain as well as on change in tau phosphorylation in the perforant pathway after entorhinal cortex lesion in mice. As fetal tau isoform does not form PHF even in a highly phosphorylated state, understanding its expression and post-translational modifications represents an important avenue for future research towards the development of AD treatment and prevention.
doi:10.1016/j.biocel.2012.05.001
PMCID: PMC3572194  PMID: 22595282
Ageing; Brain development; Paired helical filaments-PHF; Mild cognitive impairment; Tau potein kinases; Deafferentation; Entorhinal cortex lesion
20.  Selective Frontoinsular von Economo Neuron and Fork Cell Loss in Early Behavioral Variant Frontotemporal Dementia 
Cerebral Cortex (New York, NY)  2011;22(2):251-259.
Behavioral variant frontotemporal dementia (bvFTD) erodes complex social–emotional functions as the anterior cingulate cortex (ACC) and frontoinsula (FI) degenerate, but the early vulnerable neuron within these regions has remained uncertain. Previously, we demonstrated selective loss of ACC von Economo neurons (VENs) in bvFTD. Unlike ACC, FI contains a second conspicuous layer 5 neuronal morphotype, the fork cell, which has not been previously examined. Here, we investigated the selectivity, disease-specificity, laterality, timing, and symptom relevance of frontoinsular VEN and fork cell loss in bvFTD. Blinded, unbiased, systematic sampling was used to quantify bilateral FI VENs, fork cells, and neighboring neurons in 7 neurologically unaffected controls (NC), 5 patients with Alzheimer's disease (AD), and 9 patients with bvFTD, including 3 who died of comorbid motor neuron disease during very mild bvFTD. bvFTD showed selective FI VEN and fork cell loss compared with NC and AD, whereas in AD no significant VEN or fork cell loss was detected. Although VEN and fork cell losses in bvFTD were often asymmetric, no group-level hemispheric laterality effects were identified. Right-sided VEN and fork cell losses, however, correlated with each other and with anatomical, functional, and behavioral severity. This work identifies region-specific neuronal targets in early bvFTD.
doi:10.1093/cercor/bhr004
PMCID: PMC3256403  PMID: 21653702
Alzheimer's disease; behavioral variant frontotemporal dementia; fork cell; frontoinsula; von Economo neuron
21.  Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction 
Current Alzheimer research  2012;9(5):536-544.
Aberrations in epigenetic marks have been associated with aging of the brain while caloric restriction (CR) and upregulation of endogenous antioxidants have been suggested as tools to attenuate the aging process. We have recently observed age-related increases in levels of 5-methylcytidine (5-mC) and DNA methyltransferase 3a (Dnmt3a) in the mouse hippocampus. Most of those age-related changes in these epigenetic relevant markers were prevented by CR but not by transgenic overexpression of the endogenous antioxidant superoxide dismutase 1 (SOD1). As recent work has suggested a distinct role for hydroxymethylation in epigenetic regulation of gene expression in the brain, the current study investigated age-related changes of 5-hydroxymethylcytosine (5-hmC) in the mouse hippocampus, and furthermore tested whether CR and transgenic upregulation of SOD1 affected any age-related changes in 5-hmC. Immunohistochemical analyses of 5-hmC in 12- and 24-month-old wild-type and transgenic mice overexpressing SOD1, which were kept under either a control or a calorie restricted diet, revealed an increase of 5-hmC immunoreactivity occurring with aging in the hippocampal dentate gyrus, CA3 and CA1–2 regions. Moreover, CR, but not overexpression of SOD1, prevented the age-related increase in the CA3 region. These region-specific findings indicate that the aging process in mice is connected with epigenetic changes and suggest that the beneficial actions of CR may be mediated via epigenetic mechanisms such as methylation and hydroxymethylation of DNA.
PMCID: PMC3561726  PMID: 22272625
Aging; Epigenesis; Epigenetics; DNA hydroxymethylation; 5-hydroxymethylcytosine; Caloric restriction; Antioxidants; superoxide dismutase (SOD); Hippocampus
22.  Neuropil distribution in the cerebral cortex differs between humans and chimpanzees 
The Journal of comparative neurology  2012;520(13):2917-2929.
Increased connectivity of higher-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is comprised mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca’s area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.
doi:10.1002/cne.23074
PMCID: PMC3556724  PMID: 22350926
cytoarchitecture; evolution; brain; asymmetry
23.  Functional Neural Correlates of Attentional Deficits in Amnestic Mild Cognitive Impairment 
PLoS ONE  2013;8(1):e54035.
Although amnestic mild cognitive impairment (aMCI; often considered a prodromal phase of Alzheimer’s disease, AD) is most recognized by its implications for decline in memory function, research suggests that deficits in attention are present early in aMCI and may be predictive of progression to AD. The present study used functional magnetic resonance imaging to examine differences in the brain during the attention network test between 8 individuals with aMCI and 8 neurologically healthy, demographically matched controls. While there were no significant behavioral differences between groups for the alerting and orienting functions, patients with aMCI showed more activity in neural regions typically associated with the networks subserving these functions (e.g., temporoparietal junction and posterior parietal regions, respectively). More importantly, there were both behavioral (i.e., greater conflict effect) and corresponding neural deficits in executive control (e.g., less activation in the prefrontal and anterior cingulate cortices). Although based on a small number of patients, our findings suggest that deficits of attention, especially the executive control of attention, may significantly contribute to the behavioral and cognitive deficits of aMCI.
doi:10.1371/journal.pone.0054035
PMCID: PMC3543395  PMID: 23326568
24.  Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease 
Neurobiology of aging  2010;32(12):2321.e1-2321.e12.
Oligomeric β-amyloid (Aβ) has recently been linked to synaptic plasticity deficits, which play a major role in progressive cognitive decline in Alzheimer’s disease (AD). Here we present evidence that chronic oral administration of carvedilol, a nonselective β-adrenergic receptor blocker, significantly attenuates brain oligomeric Aβ content and cognitive deterioration in two independent AD mouse models. We found that carvedilol treatment significantly improved neuronal transmission, and that this improvement was associated with the maintenance of number of the less stable “learning” thin spines in the brains of AD mice. Our novel observation that carvedilol interferes with the neuropathologic, biochemical and electrophysiological mechanisms underlying cognitive deterioration in AD supports the potential development of carvedilol as a treatment for AD.
doi:10.1016/j.neurobiolaging.2010.05.004
PMCID: PMC2966505  PMID: 20579773
Oligomeric Aβ; cognitive function; spatial memory; basal neuronal transmission; dendritic spine; synaptic plasticity; bioavailability
25.  Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals 
BMC Medicine  2012;10:127.
Since the first description of the case of Auguste Deter, presented in Tübingen in 1906 by Alois Alzheimer, there has been an exponential increase in our knowledge of the neuropathological, cellular, and molecular foundation of Alzheimer's disease (AD). The concept of AD pathogenesis has evolved from a static, binary view discriminating cognitive normality from dementia, towards a dynamic view that considers AD pathology as a long-lasting morbid process that takes place progressively over years, or even decades, before the first symptoms become apparent, and thus operating in a continuum between the two aforementioned extreme states. Several biomarkers have been proposed to predict AD-related cognitive decline, initially in cases with mild cognitive impairment, and more recently in cognitively intact individuals. These early markers define at-risk individuals thought to be in the preclinical phase of AD. However, the clinical relevance of this preclinical phase remains controversial. The fate of such individuals, who are cognitively intact, but positive for some early AD biomarkers, is currently uncertain at best. In this report, we advocate the point of view that although most of these preclinical cases will evolve to clinically overt AD, some appear to have efficient compensatory mechanisms and virtually never develop dementia. We critically review the currently available early AD markers, discuss their clinical relevance, and propose a novel classification of preclinical AD, designating these non-progressing cases as 'stable asymptomatic cerebral amyloidosis'.
doi:10.1186/1741-7015-10-127
PMCID: PMC3523068  PMID: 23098093
Alzheimer disease; asymptomatic; cerebral amyloidosis; cognition; compensatory phenomena; dementia

Results 1-25 (116)