PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Physicochemical and Functional Comparability Between the Proposed Biosimilar Rituximab GP2013 and Originator Rituximab 
Biodrugs  2013;27(5):495-507.
Background
Regulatory approval for a biosimilar product is provided on the basis of its comparability to an originator product. A thorough physicochemical and functional comparability exercise is a key element in demonstrating biosimilarity. Here we report the characterization of a proposed biosimilar rituximab (GP2013) and originator rituximab.
Objective
To compare GP2013 with originator rituximab using an extensive array of routine analytical and extended characterization methods.
Methods
Primary and higher order protein structures were analyzed using a variety of methods that included high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS), peptide mapping with UV and MS detection, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, hydrogen deuterium exchange (HDX) MS, 1D 1H nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography and differential scanning calorimetry (DSC). Charge and amino acid modifications were assessed using cation exchange chromatography (CEX) and peptide mapping using reversed-phase (RP) HPLC. Boronate affinity chromatography was used to determine the relative amount of glycation. Glycans were identified and quantified after 2-aminobenzamide (2-AB) labeling and separation using normal phase HPLC with fluorescence and MS detection, respectively. Glycan site occupancy was determined using reducing capillary electrophoresis with sodium dodecyl sulfate (CE-SDS). Size heterogeneity was determined using reducing and non-reducing CE-SDS, size exclusion chromatography (SEC) and asymmetric flow field flow fractionation (AF4). Biological characterization included a series of bioassays (in vitro target binding, antibody-dependent cell-mediated cytotoxicity [ADCC], complement-dependent cytotoxicity [CDC] and apoptosis) and surface plasmon resonance (SPR) Fc receptor binding assays.
Results
Intact mass analysis of GP2013 and the heavy and light chains using RP HPLC–ESI–MS revealed the expected molecular mass of rituximab. The amino acid sequence was shown to be identical between GP2013 and the originator rituximab. Further sequence confirmation using RP-HPLC-UV/MS peptide mapping showed non-distinguishable chromatograms for Lys-C digested GP2013 and originator rituximab. The higher order structure of GP2013 was shown to be indistinguishable from originator rituximab using a large panel of redundant and orthogonal methods. GP2013 and originator rituximab were comparable with regard to charge variants, specific amino acid modifications and the glycan pattern. GP2013 was also shown to have similar purity, aggregate and particle levels when compared with the originator. Functionally, and by using a comprehensive set of bioassays and binding assays covering a broad range of rituximab’s functional activities, GP2013 could not be distinguished from originator rituximab.
Conclusion
GP2013 was shown to be physicochemically highly similar to originator rituximab at the level of primary and higher order structure, post-translational modifications and size variants. An extensive functional characterization package indicated that GP2013 has the same biological properties as originator rituximab.
doi:10.1007/s40259-013-0036-3
PMCID: PMC3775154  PMID: 23649935
2.  A New Strategy to Stabilize Oxytocin in Aqueous Solutions: I. The Effects of Divalent Metal Ions and Citrate Buffer 
The AAPS Journal  2011;13(2):284-290.
In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na+ and K+) and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl2, MgCl2, or ZnCl2 and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca2+, Mg2+, or Zn2+, while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.
doi:10.1208/s12248-011-9268-7
PMCID: PMC3085697  PMID: 21448747
citrate buffer; divalent metal ions; improved stability; oxytocin
3.  A New Strategy to Stabilize Oxytocin in Aqueous Solutions: I. The Effects of Divalent Metal Ions and Citrate Buffer 
The AAPS Journal  2011;13(2):284-290.
In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na+ and K+) and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl2, MgCl2, or ZnCl2 and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca2+, Mg2+, or Zn2+, while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.
doi:10.1208/s12248-011-9268-7
PMCID: PMC3085697  PMID: 21448747
citrate buffer; divalent metal ions; improved stability; oxytocin
4.  Target-directed development and preclinical characterization of the proposed biosimilar rituximab GP2013 
Leukemia & Lymphoma  2014;55(7):1609-1617.
Biosimilar development involves a target-directed iterative process to ensure a similar product to the originator. Here we report the preclinical development of the proposed biosimilar rituximab (GP2013). Post-translational modifications and bioactivities of GP2013 versus originator rituximab were engineered and monitored to ensure similar pharmacological profiles. Antibody-dependent cellular cytotoxicity (ADCC) was used to illustrate how different glycosylation patterns and structure–function relationships were controlled during process development. Pharmacological comparability between GP2013 and originator rituximab were confirmed in preclinical studies using clinical scale drug product. Similar in vitro ADCC potency was demonstrated when compared in a dose–response manner against two lymphoma cell lines using freshly purified human natural killer (NK) cells. In vivo efficacy was demonstrated in two well characterized mouse xenograft models, testing at sensitive sub-therapeutic dose levels. Pharmacokinetics and pharmacodynamics (CD20 cell depletion) were likewise comparable in cynomolgus monkeys. This preclinical comparability exercise confirms that GP2013 and originator rituximab are pharmacologically similar.
doi:10.3109/10428194.2013.843090
PMCID: PMC4133973  PMID: 24024472
Rituximab; non-Hodgkin lymphoma; antibody-dependent cellular cytotoxicity; biosimilars

Results 1-4 (4)