PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
2.  Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects 
Trends in Parasitology  2014;30(6):289-298.
Highlights
•Two nitro drugs are currently used in the treatment of trypanosomatid diseases.•Several new nitroaromatics are being developed against the trypanosomatid diseases.•Many nitro drugs and drug candidates act as prodrugs which require bioactivation.•Nitroaromatics can have disparate mechanisms of action in trypanosomatid parasites.
There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class.
doi:10.1016/j.pt.2014.04.003
PMCID: PMC4045206  PMID: 24776300
trypanosomatids; nitroaromatics; nitroreductase; pro-drugs; bioactivation
3.  Biochemical and genetic characterization of Trypanosoma cruzi N-myristoyltransferase 
Biochemical Journal  2014;459(Pt 2):323-332.
Co- and post-translational N-myristoylation is known to play a role in the correct subcellular localization of specific proteins in eukaryotes. The enzyme that catalyses this reaction, NMT (N-myristoyltransferase), has been pharmacologically validated as a drug target in the African trypanosome, Trypanosoma brucei. In the present study, we evaluate NMT as a potential drug target in Trypanosoma cruzi, the causative agent of Chagas’ disease, using chemical and genetic approaches. Replacement of both allelic copies of TcNMT (T. cruzi NMT) was only possible in the presence of a constitutively expressed ectopic copy of the gene, indicating that this gene is essential for survival of T. cruzi epimastigotes. The pyrazole sulphonamide NMT inhibitor DDD85646 is 13–23-fold less potent against recombinant TcNMT than TbNMT (T. brucei NMT), with Ki values of 12.7 and 22.8 nM respectively, by scintillation proximity or coupled assay methods. DDD85646 also inhibits growth of T. cruzi epimastigotes (EC50=6.9 μM), but is ~1000-fold less potent than that reported for T. brucei. On-target activity is demonstrated by shifts in cell potency in lines that over- and under-express NMT and by inhibition of intracellular N-myristoylation of several proteins in a dose-dependent manner. Collectively, our findings suggest that N-myristoylation is an essential and druggable target in T. cruzi.
The present study shows that N-myristoyltransferase is essential for growth of Trypanosoma cruzi, the parasite responsible for Chagas’ disease. The kinetic properties of the enzyme are described along with evidence that growth is specifically inhibited by blocking N-myristoylation in the parasite.
doi:10.1042/BJ20131033
PMCID: PMC3969225  PMID: 24444291
Chagas’ disease; click chemistry; drug target; N-myristoylation; Trypanosoma cruzi; validation; CAP5.5, cytoskeleton-associated protein 5.5; DIG, digoxigenin; DKO, double knockout; DMEM, Dulbecco’s modified Eagle’s medium; HYG, hygromycin phosphotransferase; NMT, N-myristoyltransferase; NMTOE, NMT overexpressor; PAC, puromycin N-acetyltransferase; RTH/FBS, RPMI 1640 medium supplemented with trypticase, haemin, Hepes and 10% heat-inactivated FBS; SKO, single knockout; TbNMT, Trypanosoma brucei NMT; TCEP, tris-(2-carboxyethyl)phosphine; TcNMT, Trypanosoma cruzi NMT; TcTryR, Trypanosoma cruzi trypanothione reductase; WT, wild-type
4.  Norspermidine Is Not a Self-Produced Trigger for Biofilm Disassembly 
Cell  2014;156(4):844-854.
Summary
Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50–80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.
Graphical Abstract
Highlights
•Norspermidine is not found or synthesized in Bacillus subtilis biofilms•Exogenous norspermidine inhibits growth of wild-type cells•Exogenous norspermidine inhibits growth of exopolysaccharide-deficient cells•Lower levels of exogenous norspermidine promote biofilm formation
It has been reported that norspermidine is synthesized by the bacterium Bacillus subtilis and inhibits biofilm formation by condensing exopolysaccharide. Now it is shown that norspermidine is not synthesized by B. subtilis, and high levels of exogenous norspermidine inhibit cell growth in an exopolysaccharide-independent manner.
doi:10.1016/j.cell.2014.01.012
PMCID: PMC3969229  PMID: 24529384
5.  Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy 
Molecular microbiology  2013;90(2):10.1111/mmi.12376.
Summary
African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) – a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite.
doi:10.1111/mmi.12376
PMCID: PMC3868941  PMID: 23980694
6.  The R Enantiomer of the Antitubercular Drug PA-824 as a Potential Oral Treatment for Visceral Leishmaniasis 
Antimicrobial Agents and Chemotherapy  2013;57(10):4699-4706.
The novel nitroimidazopyran agent (S)-PA-824 has potent antibacterial activity against Mycobacterium tuberculosis in vitro and in vivo and is currently in phase II clinical trials for tuberculosis (TB). In contrast to M. tuberculosis, where (R)-PA-824 is inactive, we report here that both enantiomers of PA-824 show potent parasiticidal activity against Leishmania donovani, the causative agent of visceral leishmaniasis (VL). In leishmania-infected macrophages, (R)-PA-824 is 6-fold more active than (S)-PA-824. Both des-nitro analogues are inactive, underlining the importance of the nitro group in the mechanism of action. Although the in vitro and in vivo pharmacological profiles of the two enantiomers are similar, (R)-PA-824 is more efficacious in the murine model of VL, with >99% suppression of parasite burden when administered orally at 100 mg kg of body weight−1, twice daily for 5 days. In M. tuberculosis, (S)-PA-824 is a prodrug that is activated by a deazaflavin-dependent nitroreductase (Ddn), an enzyme which is absent in Leishmania spp. Unlike the case with nifurtimox and fexinidazole, transgenic parasites overexpressing the leishmania nitroreductase are not hypersensitive to either (R)-PA-824 or (S)-PA-824, indicating that this enzyme is not the primary target of these compounds. Drug combination studies in vitro indicate that fexinidazole and (R)-PA-824 are additive whereas (S)-PA-824 and (R)-PA-824 show mild antagonistic behavior. Thus, (R)-PA-824 is a promising candidate for late lead optimization for VL and may have potential for future use in combination therapy with fexinidazole, currently in phase II clinical trials against VL.
doi:10.1128/AAC.00722-13
PMCID: PMC3811480  PMID: 23856774
7.  Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastigote Assay 
Visceral leishmaniasis is a neglected tropical disease with significant health impact. The current treatments are poor, and there is an urgent need to develop new drugs. Primary screening assays used for drug discovery campaigns have typically used free-living forms of the Leishmania parasite to allow for high-throughput screening. Such screens do not necessarily reflect the physiological situation, as the disease-causing stage of the parasite resides inside human host cells. Assessing the drug sensitivity of intracellular parasites on scale has recently become feasible with the advent of high-content screening methods. We describe here a 384-well microscopy-based intramacrophage Leishmania donovani assay and compare it to an axenic amastigote system. A panel of eight reference compounds was tested in both systems, as well as a human counterscreen cell line, and our findings show that for most clinically used compounds both axenic and intramacrophage assays report very similar results. A set of 15,659 diverse compounds was also screened using both systems. This resulted in the identification of seven new antileishmanial compounds and revealed a high false-positive rate for the axenic assay. We conclude that the intramacrophage assay is more suited as a primary hit-discovery platform than the current form of axenic assay, and we discuss how modifications to the axenic assay may render it more suitable for hit-discovery.
doi:10.1128/AAC.02398-12
PMCID: PMC3697379  PMID: 23571538
8.  Allosteric Activation of Trypanosomatid Deoxyhypusine Synthase by a Catalytically Dead Paralog*♦ 
The Journal of Biological Chemistry  2013;288(21):15256-15267.
Background: Deoxyhypusine synthase (DHS) catalyzes the spermidine-dependent modification of translation factor eIF5A.
Results: Trypanosomatid DHS activity is increased 3000-fold by heterotetramer formation with a catalytically dead paralog, and both gene products are essential for parasite growth.
Conclusion: Trypanosomatid DHS is a complex between catalytically impaired and inactive DHS subunits.
Significance: This activation mechanism uniquely evolved for two independent enzymes within the trypanosomatid polyamine pathway.
Polyamine biosynthesis is a key drug target in African trypanosomes. The “resurrection drug” eflornithine (difluoromethylornithine), which is used clinically to treat human African trypanosomiasis, inhibits the first step in polyamine (spermidine) biosynthesis, a highly regulated pathway in most eukaryotic cells. Previously, we showed that activity of a key trypanosomatid spermidine biosynthetic enzyme, S-adenosylmethionine decarboxylase, is regulated by heterodimer formation with a catalytically dead paralog (a prozyme). Here, we describe an expansion of this prozyme paradigm to the enzyme deoxyhypusine synthase, which is required for spermidine-dependent hypusine modification of a lysine residue in the essential translation factor eIF5A. Trypanosoma brucei encodes two deoxyhypusine synthase paralogs, one that is catalytically functional but grossly impaired, and the other is inactive. Co-expression in Escherichia coli results in heterotetramer formation with a 3000-fold increase in enzyme activity. This functional complex is also present in T. brucei, and conditional knock-out studies indicate that both DHS genes are essential for in vitro growth and infectivity in mice. The recurrent evolution of paralogous, catalytically dead enzyme-based activating mechanisms may be a consequence of the unusual gene expression in the parasites, which lack transcriptional regulation. Our results suggest that this mechanism may be more widely used by trypanosomatids to control enzyme activity and ultimately influence pathogenesis than currently appreciated.
doi:10.1074/jbc.M113.461137
PMCID: PMC3663545  PMID: 23525104
Parasite Metabolism; Polyamines; Protozoan; Trypanosoma brucei; Trypanosome; Deoxyhypusine; Deoxyhypusine Synthase; eIF5A; Spermidine
9.  Assessing the Essentiality of Leishmania donovani Nitroreductase and Its Role in Nitro Drug Activation 
The nitroimidazole fexinidazole has potential as a safe and effective oral drug therapy for the treatment of visceral leishmaniasis. To date, nitroheterocyclics have not been used in the treatment of leishmaniasis, and relatively little is known about their mechanism of action. In African trypanosomes, nitro drugs are reductively activated by a type I nitroreductase (NTR), absent in mammalian cells. Modulation of nitroreductase levels in Trypanosoma brucei directly affected sensitivity to nitro compounds, with reduced concentrations of the enzyme leading to moderate nitro drug resistance. In view of the progression of fexinidazole into clinical development for visceral leishmaniasis, here we assess the essentiality of the nitroreductase in Leishmania donovani and the effect of modulating nitroreductase levels on susceptibility to fexinidazole. The failure to directly replace both endogenous copies of the NTR gene, except in the presence of an ectopic copy of the gene, suggests that the NTR gene is essential for the growth and survival of L. donovani promastigotes. Loss of a single chromosomal copy of the L. donovani NTR gene resulted in parasites that were mildly resistant (<2-fold) to the predominant in vivo metabolite of fexinidazole, while parasites overexpressing NTR were 18-fold more susceptible. These data confirm that Leishmania NTR plays a pivotal role in fexinidazole activation. Reliance on a single enzyme for prodrug activation may leave fexinidazole vulnerable to the emergence of drug resistance. However, the essentiality of the NTR in L. donovani promastigotes, combined with the limited resistance shown by NTR single knockout cells, suggests that the potential for the spread of NTR-based resistance to fexinidazole may be limited.
doi:10.1128/AAC.01788-12
PMCID: PMC3553740  PMID: 23208716
10.  The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis 
Science translational medicine  2012;4(119):119re1.
Safer and more effective oral drugs are required to treat visceral leishmaniasis, a parasitic disease that kills 50-60,000 people each year. Here we report that fexinidazole, a drug currently in phase I clinical trials for treating African trypanosomiasis, shows promise for treating visceral leishmaniasis. This 2-substituted 5-nitroimidazole drug is rapidly oxidized in vivo in mice, dogs and humans to sulfoxide and sulfone metabolites. Both metabolites of fexinidazole were active against Leishmania donovani amastigotes grown in macrophages, whereas the parent compound was inactive. Pharmacokinetic studies with fexinidazole (200 mg kg−1) showed that fexinidazole sulfone achieves blood concentrations in mice above the EC99 value for at least 24h following a single oral dose. A once daily regimen for 5 days at this dose resulted in a 98.4% suppression of infection in a mouse model of visceral leishmaniasis, equivalent to that seen with the drugs miltefosine and Pentostam, which are currently used clinically to treat visceral leishmaniasis. In African trypanosomes, the mode of action of nitro-drugs involves reductive activation via an NADH-dependent bacterial-like nitroreductase. Overexpression of the leishmanial homologue of this nitroreductase in L. donovani increased sensitivity to fexinidazole by 19-fold indicating that a similar mechanism is involved in both parasites. These findings illustrate the potential of fexinidazole as an oral drug therapy for treating visceral leishmaniasis.
doi:10.1126/scitranslmed.3003326
PMCID: PMC3457684  PMID: 22301556
11.  Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates 
Enhancement of the anti-oxidant metabolism of Leishmania parasites, dependent upon the unique dithiol trypanothione, has been implicated in laboratory-generated antimony resistance. Here, the role of the trypanothione-dependent anti-oxidant pathway is studied in antimony-resistant clinical isolates. Elevated levels of tryparedoxin and tryparedoxin peroxidase, key enzymes in hydroperoxide detoxification, were observed in antimonial resistant parasites resulting in an increased metabolism of peroxides. These data suggest that enhanced anti-oxidant defences may play significant in clinical resistance to antimonials.
doi:10.1016/j.molbiopara.2010.05.015
PMCID: PMC3428625  PMID: 20553768
antimonial resistance; Leishmania donovani; tryparedoxin peroxidase
12.  Quinol derivatives as potential trypanocidal agents 
Bioorganic & Medicinal Chemistry  2012;20(4):1607-1615.
Graphical abstract
Quinols have been developed as a class of potential anti-cancer compounds. They are thought to act as double Michael acceptors, forming two covalent bonds to their target protein(s). Quinols have also been shown to have activity against the parasite Trypanosoma brucei, the causative organism of human African trypanosomiasis, but they demonstrated little selectivity over mammalian MRC5 cells in a counter-screen. In this paper, we report screening of further examples of quinols against T. brucei. We were able to derive an SAR, but the compounds demonstrated little selectivity over MRC5 cells. In an approach to increase selectivity, we attached melamine and benzamidine motifs to the quinols, because these moieties are known to be selectively concentrated in the parasite by transporter proteins. In general these transporter motif-containing analogues showed increased selectivity; however they also showed reduced levels of potency against T. brucei.
doi:10.1016/j.bmc.2011.12.018
PMCID: PMC3281193  PMID: 22264753
Inhibitors; Medicinal chemistry; Trypanosoma brucei; P2 transporter; Quinols
14.  Methylglyoxal metabolism in trypanosomes and leishmania 
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming d-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than d-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy.
doi:10.1016/j.semcdb.2011.02.001
PMCID: PMC3107426  PMID: 21310261
GLO1, glyoxalase I; GLO2, glyoxalase II; T[SH]2, trypanothione, N1,N8-bis(glutathionyl)spermidine; GSH, glutathione; LADH, lactaldehyde dehydrogenase; Trypanosoma; Leishmania; Methylglyoxal; Glyoxalase; Trypanothione; Drug discovery
15.  Dissecting the Metabolic Roles of Pteridine Reductase 1 in Trypanosoma brucei and Leishmania major* 
The Journal of Biological Chemistry  2011;286(12):10429-10438.
Leishmania parasites are pteridine auxotrophs that use an NADPH-dependent pteridine reductase 1 (PTR1) and NADH-dependent quinonoid dihydropteridine reductase (QDPR) to salvage and maintain intracellular pools of tetrahydrobiopterin (H4B). However, the African trypanosome lacks a credible candidate QDPR in its genome despite maintaining apparent QDPR activity. Here we provide evidence that the NADH-dependent activity previously reported by others is an assay artifact. Using an HPLC-based enzyme assay, we demonstrate that there is an NADPH-dependent QDPR activity associated with both TbPTR1 and LmPTR1. The kinetic properties of recombinant PTR1s are reported at physiological pH and ionic strength and compared with LmQDPR. Specificity constants (kcat/Km) for LmPTR1 are similar with dihydrobiopterin (H2B) and quinonoid dihydrobiopterin (qH2B) as substrates and about 20-fold lower than LmQDPR with qH2B. In contrast, TbPTR1 shows a 10-fold higher kcat/Km for H2B over qH2B. Analysis of Trypanosoma brucei isolated from infected rats revealed that H4B (430 nm, 98% of total biopterin) was the predominant intracellular pterin, consistent with a dual role in the salvage and regeneration of H4B. Gene knock-out experiments confirmed this: PTR1-nulls could only be obtained from lines overexpressing LmQDPR with H4B as a medium supplement. These cells grew normally with H4B, which spontaneously oxidizes to qH2B, but were unable to survive in the absence of pterin or with either biopterin or H2B in the medium. These findings establish that PTR1 has an essential and dual role in pterin metabolism in African trypanosomes and underline its potential as a drug target.
doi:10.1074/jbc.M110.209593
PMCID: PMC3060496  PMID: 21239486
Enzyme Kinetics; Gene Knockout; Parasite Metabolism; Pterin; Trypanosome; Biopterin; Leishmania; Pteridine Reductase; Quinonoid Pteridine Reductase; Substrate Inhibition
16.  Antitumor Quinol PMX464 Is a Cytocidal Anti-trypanosomal Inhibitor Targeting Trypanothione Metabolism* 
The Journal of Biological Chemistry  2011;286(10):8523-8533.
Better drugs are urgently needed for the treatment of African sleeping sickness. We tested a series of promising anticancer agents belonging to the 4-substituted 4-hydroxycyclohexa-2,5-dienones class (“quinols”) and identified several with potent trypanocidal activity (EC50 < 100 nm). In mammalian cells, quinols are proposed to inhibit the thioredoxin/thioredoxin reductase system, which is absent from trypanosomes. Studies with the prototypical 4-benzothiazole-substituted quinol, PMX464, established that PMX464 is rapidly cytocidal, similar to the arsenical drug, melarsen oxide. Cell lysis by PMX464 was accelerated by addition of sublethal concentrations of glucose oxidase implicating oxidant defenses in the mechanism of action. Whole cells treated with PMX464 showed a loss of trypanothione (T(SH)2), a unique dithiol in trypanosomes, and tryparedoxin peroxidase (TryP), a 2-Cys peroxiredoxin similar to mammalian thioredoxin peroxidase. Enzyme assays revealed that T(SH)2, TryP, and a glutathione peroxidase-like tryparedoxin-dependent peroxidase were inhibited in time- and concentration-dependent manners. The inhibitory activities of various quinol analogues against these targets showed a good correlation with growth inhibition of Trypanosoma brucei. The monothiols glutathione and l-cysteine bound in a 2:1 ratio with PMX464 with Kd values of 6 and 27 μm, respectively, whereas T(SH)2 bound more tightly in a 1:1 ratio with a Kd value of 430 nm. Overexpression of trypanothione synthetase in T. brucei decreased sensitivity to PMX464 indicating that the key metabolite T(SH)2 is a target for quinols. Thus, the quinol pharmacophore represents a novel lead structure for the development of a new drug against African sleeping sickness.
doi:10.1074/jbc.M110.214833
PMCID: PMC3048735  PMID: 21212280
Drug Action; Metabolism; Peroxidase; Thiol; Trypanosome; Quinol; Trypanothione; Tryparedoxin Peroxidase
17.  Cross-Resistance to Nitro Drugs and Implications for Treatment of Human African Trypanosomiasis▿ ‖ 
The success of nifurtimox-eflornithine combination therapy (NECT) for the treatment of human African trypanosomiasis (HAT) has renewed interest in the potential of nitro drugs as chemotherapeutics. In order to study the implications of the more widespread use of nitro drugs against these parasites, we examined the in vivo and in vitro resistance potentials of nifurtimox and fexinidazole and its metabolites. Following selection in vitro by exposure to increasing concentrations of nifurtimox, Trypanosoma brucei brucei nifurtimox-resistant clones designated NfxR1 and NfxR2 were generated. Both cell lines were found to be 8-fold less sensitive to nifurtimox than parental cells and demonstrated cross-resistance to a number of other nitro drugs, most notably the clinical trial candidate fexinidazole (∼27-fold more resistant than parental cells). Studies of mice confirmed that the generation of nifurtimox resistance in these parasites did not compromise virulence, and NfxR1 remained resistant to both nifurtimox and fexinidazole in vivo. In the case of fexinidazole, drug metabolism and pharmacokinetic studies indicate that the parent drug is rapidly metabolized to the sulfoxide and sulfone form of this compound. These metabolites retained trypanocidal activity but were less effective in nifurtimox-resistant lines. Significantly, trypanosomes selected for resistance to fexinidazole were 10-fold more resistant to nifurtimox than parental cells. This reciprocal cross-resistance has important implications for the therapeutic use of nifurtimox in a clinical setting and highlights a potential danger in the use of fexinidazole as a monotherapy.
doi:10.1128/AAC.00332-10
PMCID: PMC2897277  PMID: 20439607
18.  Chemical Validation of Trypanothione Synthetase 
The Journal of Biological Chemistry  2009;284(52):36137-36145.
In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 × EC50 for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.
doi:10.1074/jbc.M109.045336
PMCID: PMC2794729  PMID: 19828449
19.  A comparative study of methylglyoxal metabolism in trypanosomatids 
The Febs Journal  2009;276(2):376-386.
The glyoxalase system, comprising the metalloenzymes glyoxalase I (GLO1) and glyoxalase II (GLO2), is an almost universal metabolic pathway involved in the detoxification of the glycolytic byproduct methylglyoxal to d-lactate. In contrast to the situation with the trypanosomatid parasites Leishmania major and Trypanosoma cruzi, this trypanothione-dependent pathway is less well understood in the African trypanosome, Trypanosoma brucei. Although this organism possesses a functional GLO2, no apparent GLO1 gene could be identified in the T. brucei genome. The absence of GLO1 in T. brucei was confirmed by the lack of GLO1 activity in whole cell extracts, failure to detect a GLO1-like protein on immunoblots of cell lysates, and lack of d-lactate formation from methylglyoxal as compared to L. major and T. cruzi. T. brucei procyclics were found to be 2.4-fold and 5.7-fold more sensitive to methylglyoxal toxicity than T. cruzi and L. major, respectively. T. brucei also proved to be the least adept of the ‘Tritryp’ parasites in metabolizing methylglyoxal, producing l-lactate rather than d-lactate. Restoration of a functional glyoxalase system by expression of T. cruzi GLO1 in T. brucei resulted in increased resistance to methylglyoxal and increased conversion of methylglyoxal to d-lactate, demonstrating that GLO2 is functional in vivo. Procyclic forms of T. brucei possess NADPH-dependent methylglyoxal reductase and NAD+-dependent l-lactaldehyde dehydrogenase activities sufficient to account for all of the methylglyoxal metabolized by these cells. We propose that the predominant mechanism for methylglyoxal detoxification in the African trypanosome is via the methylglyoxal reductase pathway to l-lactate.
doi:10.1111/j.1742-4658.2008.06788.x
PMCID: PMC2702497  PMID: 19076214
glyoxalase; lactate; methylglyoxal metabolism; Trypanosoma brucei; trypanothione
20.  ATP-dependent ligases in trypanothione biosynthesis – kinetics of catalysis and inhibition by phosphinic acid pseudopeptides 
The Febs Journal  2008;275(21):5408-5421.
Glutathionylspermidine is an intermediate formed in the biosynthesis of trypanothione, an essential metabolite in defence against chemical and oxidative stress in the Kinetoplastida. The kinetic mechanism for glutathionylspermidine synthetase (EC 6.3.1.8) from Crithidia fasciculata (CfGspS) obeys a rapid equilibrium random ter-ter model with kinetic constants KGSH = 609 μm, KSpd = 157 μm and KATP = 215 μm. Phosphonate and phosphinate analogues of glutathionylspermidine, previously shown to be potent inhibitors of GspS from Escherichia coli, are equally potent against CfGspS. The tetrahedral phosphonate acts as a simple ground state analogue of glutathione (GSH) (Ki ∼ 156 μm), whereas the phosphinate behaves as a stable mimic of the postulated unstable tetrahedral intermediate. Kinetic studies showed that the phosphinate behaves as a slow-binding bisubstrate inhibitor [competitive with respect to GSH and spermidine (Spd)] with rate constants k3 (on rate) = 6.98 × 104 m−1·s−1 and k4 (off rate) = 1.3 × 10−3 s−1, providing a dissociation constant Ki = 18.6 nm. The phosphinate analogue also inhibited recombinant trypanothione synthetase (EC 6.3.1.9) from C. fasciculata, Leishmania major, Trypanosoma cruzi and Trypanosoma brucei with Kiapp values 20–40-fold greater than that of CfGspS. This phosphinate analogue remains the most potent enzyme inhibitor identified to date, and represents a good starting point for drug discovery for trypanosomiasis and leishmaniasis.
doi:10.1111/j.1742-4658.2008.06670.x
PMCID: PMC2702004  PMID: 18959765
drug discovery; enzyme mechanism; glutathionylspermidine synthetase; slow-binding inhibition; trypanothione synthetase
21.  Chemical and genetic validation of dihydrofolate reductase–thymidylate synthase as a drug target in African trypanosomes 
Molecular Microbiology  2008;69(2):520-533.
The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase–thymidylate synthase (DHFR–TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR–TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR–TS is essential for parasite survival and represents a promising target for drug discovery.
doi:10.1111/j.1365-2958.2008.06305.x
PMCID: PMC2610392  PMID: 18557814
22.  Roles of Trypanothione S-Transferase and Tryparedoxin Peroxidase in Resistance to Antimonials▿  
The clinical value of antimonial drugs, the mainstay therapy for leishmaniasis, is now threatened by the emergence of acquired drug resistance, and a comprehensive understanding of the underlying mechanisms is required. Using the model organism Leishmania tarentolae, we have examined the role of trypanothione S-transferase (TST) in trivalent antimony [Sb(III)] resistance. TST has S-transferase activity with substrates such as chlorodinitrobenzene as well as peroxidase activity with alkyl and aryl hydroperoxides but not with hydrogen peroxide. Although S-transferase activity and TST protein levels were unchanged in Sb(III)-sensitive and -resistant lines, rates of metabolism of hydrogen peroxide, t-butyl hydroperoxide, and cumene hydroperoxide were significantly increased. Elevated peroxidase activities were shown to be both trypanothione and tryparedoxin dependent and were associated with the overexpression of classical tryparedoxin peroxidase (TryP) in the cytosol of L. tarentolae. The role of TryP in Sb(III) resistance was verified by overexpression of the recombinant Leishmania major protein in Sb(III)-sensitive promastigotes. An approximate twofold increase in the level of TryP activity in this transgenic cell line was accompanied by a significant decrease in sensitivity to Sb(III) (twofold; P < 0.001). Overexpression of an enzymatically inactive TryP failed to result in Sb(III) resistance. This indicates that TryP-dependent resistance is not due to sequestration of Sb(III) and suggests that enhanced antioxidant defenses may well be a key feature of mechanisms of clinical resistance to antimonial drugs.
doi:10.1128/AAC.01563-07
PMCID: PMC2292513  PMID: 18250189
23.  Identification of Chlamydia trachomatis Genomic Sequences Recognized by Chlamydial Divalent Cation-Dependent Regulator A (DcrA) 
Journal of Bacteriology  2005;187(2):443-448.
The Chlamydia trachomatis divalent cation-dependent regulator (DcrA), encoded by open reading frame CT296, is a distant relative of the ferric uptake regulator (Fur) family of iron-responsive regulators. Chlamydial DcrA specifically binds to a consensus Escherichia coli Fur box and is able to complement an E. coli Fur mutant. In this report, the E. coli Fur titration assay (FURTA) was used to locate chlamydial genomic sequences that are recognized by E. coli Fur. The predictive regulatory regions of 28 C. trachomatis open reading frames contained sequences functionally recognized by E. coli Fur; targets include components of the type III secretion pathway, elements involved in envelope and cell wall biogenesis, predicted transport proteins, oxidative defense enzymes, and components of metabolic pathways. Selected FURTA-positive sequences were subsequently examined for recognition by C. trachomatis DcrA using an electrophoretic mobility shift assay. The resultant data show that C. trachomatis DcrA binds to native chlamydial genomic sequences and, overall, substantiate a functional relationship between chlamydial DcrA and the Fur family of regulators.
doi:10.1128/JB.187.2.443-448.2005
PMCID: PMC543534  PMID: 15629915
24.  The Major Outer Membrane Protein of Chlamydia psittaci Functions as a Porin-Like Ion Channel 
Infection and Immunity  1998;66(11):5202-5207.
The major outer membrane protein (MOMP) of Chlamydia species shares several biochemical properties with classical porin proteins. Secondary structure analysis by circular dichroism now reveals that MOMP purified from Chlamydia psittaci has a predominantly β-sheet content (62%), which is also typical of bacterial porins. Can MOMP form functional ion channels? To directly test the “porin channel” hypothesis at the molecular level, the MOMP was reconstituted into planar lipid bilayers, where it gave rise to multibarreled channels, probably trimers, which were modified by an anti-MOMP monoclonal antibody. These observations are consistent with the well-characterized homo-oligomeric nature of MOMP previously revealed by biochemical analysis and with the triple-barreled behavior of other porins. MOMP channels were weakly anion selective (PCl/PK ∼ 2) and permeable to ATP. They may therefore be a route by which Chlamydia can take advantage of host nucleoside triphosphates and explain why some anti-MOMP antibodies neutralize infection. These findings have broad implications on the search for an effective chlamydial vaccine to control the significant human and animal diseases caused by these organisms.
PMCID: PMC108649  PMID: 9784523
25.  Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome 
Molecular Microbiology  2012;86(1):51-64.
Pyridoxal-5′-phosphate (vitamin B6) is an essential cofactor for many important enzymatic reactions such as transamination and decarboxylation. African trypanosomes are unable to synthesise vitamin B6de novo and rely on uptake of B6 vitamers such as pyridoxal and pyridoxamine from their hosts, which are subsequently phosphorylated by pyridoxal kinase (PdxK). A conditional null mutant of PdxK was generated in Trypanosoma brucei bloodstream forms showing that this enzyme is essential for growth of the parasite in vitro and for infectivity in mice. Activity of recombinant T. brucei PdxK was comparable to previously published work having a specific activity of 327 ± 13 mU mg−1 and a Kmapp with respect to pyridoxal of 29.6 ± 3.9 µM. A coupled assay was developed demonstrating that the enzyme has equivalent catalytic efficiency with pyridoxal, pyridoxamine and pyridoxine, and that ginkgotoxin is an effective pseudo substrate. A high resolution structure of PdxK in complex with ATP revealed important structural differences with the human enzyme. These findings suggest that pyridoxal kinase is an essential and druggable target that could lead to much needed alternative treatments for this devastating disease.
doi:10.1111/j.1365-2958.2012.08189.x
PMCID: PMC3470933  PMID: 22857512

Results 1-25 (27)