Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Synthesis of UDP-N-acetylglucosamine Is Essential for Bloodstream Form Trypanosoma brucei in Vitro and in Vivo and UDP-N-acetylglucosamine Starvation Reveals a Hierarchy in Parasite Protein Glycosylation*S⃞ 
The Journal of Biological Chemistry  2008;283(23):16147-16161.
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
PMCID: PMC2414269  PMID: 18381290
2.  Sugar Nucleotide Pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major▿ †  
Eukaryotic Cell  2007;6(8):1450-1463.
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-α-d-mannose, UDP-α-d-N-acetylglucosamine, UDP-α-d-glucose, UDP-α-galactopyranose, and GDP-β-l-fucose, were common to all three species; one, UDP-α-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-β-l-rhamnopyranose, UDP-α-d-xylose, and UDP-α-d-glucuronic acid, were found only in T. cruzi; and one, GDP-α-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
PMCID: PMC1951125  PMID: 17557881
3.  Galactose Starvation in a Bloodstream Form Trypanosoma brucei UDP-Glucose 4′-Epimerase Conditional Null Mutant 
Eukaryotic Cell  2006;5(11):1906-1913.
Galactose metabolism is essential for the survival of Trypanosoma brucei, the etiological agent of African sleeping sickness. T. brucei hexose transporters are unable to transport galactose, which is instead obtained through the epimerization of UDP-glucose to UDP-galactose catalyzed by UDP-glucose 4′-epimerase (galE). Here, we have characterized the phenotype of a bloodstream form T. brucei galE conditional null mutant under nonpermissive conditions that induced galactose starvation. Cellular levels of UDP-galactose dropped rapidly upon induction of galactose starvation, reaching undetectable levels after 72 h. Analysis of extracted glycoproteins by ricin and tomato lectin blotting showed that terminal β-d-galactose was virtually eliminated and poly-N-acetyllactosamine structures were substantially reduced. Mass spectrometric analysis of variant surface glycoprotein confirmed complete loss of galactose from the glycosylphosphatidylinositol anchor. After 96 h, cell division ceased, and electron microscopy revealed that the cells had adopted a morphologically distinct stumpy-like form, concurrent with the appearance of aberrant vesicles close to the flagellar pocket. These data demonstrate that the UDP-glucose 4′-epimerase is essential for the production of UDP-galactose required for galactosylation of glycoproteins and that galactosylation of one or more glycoproteins, most likely in the lysosomal/endosomal system, is essential for the survival of bloodstream form T. brucei.
PMCID: PMC1694802  PMID: 17093269

Results 1-3 (3)