PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol 
Molecular microbiology  2006;61(1):89-105.
Summary
In bloodstream-form Trypanosoma brucei (the causative agent of African sleeping sickness) the glycosylphosphatidylinositol (GPI) anchor biosynthetic pathway has been validated genetically and chemically as a drug target. The conundrum that GPI anchors could not be in vivo labelled with [3H]-inositol led us to hypothesize that de novo synthesis was responsible for supplying myo-inositol for phosphatidylinositol (PI) destined for GPI synthesis. The rate-limiting step of the de novo synthesis is the isomerization of glucose 6-phosphate to 1-d-myo-inositol-3-phosphate, catalysed by a 1-d-myo-inositol-3-phosphate synthase (INO1). When grown under non-permissive conditions, a conditional double knockout demonstrated that INO1 is an essential gene in bloodstream-form T. brucei. It also showed that the de novo synthesized myo-inositol is utilized to form PI, which is preferentially used in GPI biosynthesis. We also show for the first time that extracellular myo-inositol can in fact be used in GPI formation although to a limited extent. Despite this, extracellular inositol cannot compensate for the deletion of INO1. Supporting these results, there was no change in PI levels in the conditional double knockout cells grown under non-permissive conditions, showing that perturbation of growth is due to a specific lack of de novo synthesized myo-inositol and not a general inositol-less death. These results suggest that there is a distinction between de novo synthesized myo-inositol and that from the extracellular environment.
doi:10.1111/j.1365-2958.2006.05216.x
PMCID: PMC3793301  PMID: 16824097
2.  Mutations in pimE Restore Lipoarabinomannan Synthesis and Growth in a Mycobacterium smegmatis lpqW Mutant▿ ‡ 
Journal of Bacteriology  2008;190(10):3690-3699.
Lipoarabinomannans (LAMs) and phosphatidylinositol mannosides (PIMs) are abundant glycolipids in the cell walls of all corynebacteria and mycobacteria, including the devastating human pathogen Mycobacterium tuberculosis. We have recently shown that M. smegmatis mutants of the lipoprotein-encoding lpqW gene have a profound defect in LAM biosynthesis. When these mutants are cultured in complex medium, spontaneous bypass mutants consistently evolve in which LAM biosynthesis is restored at the expense of polar PIM synthesis. Here we show that restoration of LAM biosynthesis in the lpqW mutant results from secondary mutations in the pimE gene. PimE is a mannosyltransferase involved in converting AcPIM4, a proposed branch point intermediate in the PIM and LAM biosynthetic pathways, to more polar PIMs. Mutations in pimE arose due to insertion of the mobile genetic element ISMsm1 and independent point mutations that were clustered in predicted extracytoplasmic loops of this polytopic membrane protein. Our findings provide the first strong evidence that LpqW is required to channel intermediates such as AcPIM4 into LAM synthesis and that loss of PimE function results in the accumulation of AcPIM4, bypassing the need for LpqW. These data highlight new mechanisms regulating the biosynthetic pathways of these essential cell wall components.
doi:10.1128/JB.00200-08
PMCID: PMC2395014  PMID: 18344361
3.  The Synthesis of UDP-N-acetylglucosamine Is Essential for Bloodstream Form Trypanosoma brucei in Vitro and in Vivo and UDP-N-acetylglucosamine Starvation Reveals a Hierarchy in Parasite Protein Glycosylation*S⃞ 
The Journal of Biological Chemistry  2008;283(23):16147-16161.
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
doi:10.1074/jbc.M709581200
PMCID: PMC2414269  PMID: 18381290

Results 1-3 (3)