PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Pharmacokinetic/Pharmacodynamic Modeling of Corticosterone Suppression and Lymphocytopenia by Methylprednisolone in Rats 
Journal of pharmaceutical sciences  2008;97(7):2820-2832.
Adrenal suppression and lymphocytopenia are commonly monitored pharmacological responses during systemic exposure to exogenously administered corticosteroids. The pharmacodynamics of plasma corticosterone (CS) and blood lymphocytes were investigated in 60 normal rats which received either 50 mg/kg methylprednisolone (MPL) or vehicle intramuscularly. Blood samples were collected between 0.5 and 96 h following treatment. Plasma CS displayed a transient suppression with re-establishment of a normal circadian rhythm 24 h following drug treatment. An indirect response model with suppression of production well captured plasma CS profiles. An early stress-induced rise in CS was also factored into the model. Blood lymphocyte numbers exhibited a sharp decline and then returned to a new circadian rhythm which was half of the original baseline level. An integrated pharmacodynamic (PD) model with inhibition of lymphocyte trafficking from tissue to blood by both MPL and CS and induction of cell apoptosis by MPL reasonably captured this lymphocytopenia. Rats and humans differ in lymphocyte responses with humans showing full recovery of baselines. Modeling provides a valuable tool in quantitative assessment of dual, complex drug responses.
doi:10.1002/jps.21167
PMCID: PMC3726057  PMID: 17828751
pharmacokinetics; pharmacodynamics; hormones; mathematical model; pharmacokinetic/pharmacodynamic models; corticosteroid; lymphocyte; cell trafficking; indirect response model; circadian rhythm
2.  Charge variants in IgG1 
mAbs  2010;2(6):613-624.
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7–9.1 and was composed of about 20% acidic variants, 12% basic variants and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity or the PK properties in rats.
doi:10.4161/mabs.2.6.13333
PMCID: PMC3011216  PMID: 20818176
mAb IgG1; charge heterogeneity; isoelectric point; neonatal Fc receptor (FcRn); pharmacokinetics; potency
3.  Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades 
Corticosteroids (CS) effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX) rats were given single doses of 50 mg/kg methylprednisolone (MPL) intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1), uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), fatty acid translocase (FAT) and glycerol-3-phosphate acyltransferase (GPAT) dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N)) and transcription factors. The oscillatory feature of endothelin-1 (ET-1) expression was depicted by a negative feedback loop. These integrated models provide testable quantitative hypotheses for these regulatory cascades.
PMCID: PMC2733097  PMID: 19787081
corticosteroid; glucocorticoid; microarrays; mathematical modeling; insulin resistance

Results 1-3 (3)