Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL) 
Glycosylation-enabling genes are thought to comprise approximately 1–2 % of the human genome, thus, it is not surprising that more than 100 genetic disorders have been identified in this complex multi-pathway cellular process. Recent advances in next generation sequencing technology (NGS) have led to the discovery of genetic causes of many new disorders and importantly highlighted the broad phenotypes that occur. Here we will focus on two glycosylation pathways that involve lipids; glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL) with emphasis on the specific gene defects, their biochemical properties, and their expanding clinical spectra. These disorders involve the intersection of two pathways: lipids and carbohydrates. Studies of both pathways were founded on structural biochemistry. Those methods and their more refined and sensitive descendants can both identify the specific genes that cause the disorders and validate the importance of the specific mutations.
PMCID: PMC4373530  PMID: 25164783
2.  A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex 
Human Molecular Genetics  2013;23(6):1602-1605.
Nearly 50 congenital disorders of glycosylation (CDG) are known, but many patients biochemically diagnosed with CDG do not have mutations in known genes. Here, we describe a 16-year-old male who was born with microcephaly, developed intellectual disability, gastroesophageal reflux and a seizure disorder. We identified a de novo variant in the X-linked SSR4 gene which encodes a protein of the heterotetrameric translocon-associated protein (TRAP) complex. The c.316delT causes a p.F106Sfs*53 in SSR4 and also reduces expression of other TRAP complex proteins. The glycosylation marker Glyc-ER-GFP was used to confirm the underglycosylation in fibroblasts from the patient. Overexpression of the wild-type SSR4 allele partially restores glycosylation of the marker and of the other members of the TRAP complex. This is the first evidence that the TRAP complex, which binds to the oligosaccharyltransferase complex, is directly involved in N-glycosylation.
PMCID: PMC3929095  PMID: 24218363
3.  Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell free assay 
Traffic (Copenhagen, Denmark)  2013;15(1):12-21.
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterised at the molecular level. We have developed a cell free assay that reconstitutes vesicle targeting utilising the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterising some novel cases of congenital glycosylation disorders.
PMCID: PMC3892563  PMID: 24102787
Golgi apparatus; vesicle tethering; conserved oligomeric Golgi complex; congenital disorders of glycosylation; cell free reconstitution; glycosylation enzyme sorting
4.  Severe, fatal multisystem manifestations in a patient with dolichol kinase-congenital disorder of glycosylation 
Molecular genetics and metabolism  2013;110(4):484-489.
Congenital disorders of glycosylation are a group of metabolic disorders with an expansive and highly variable clinical presentation caused by abnormal glycosylation of proteins and lipids. Dolichol kinase (DOLK) catalyzes the final step in biosynthesis of dolichol phosphate (Dol-P), which is the oligosaccharide carrier required for protein N-glycosylation. Human DOLK deficiency, also known as DOLK-CDG or CDG-Im, results in a syndrome that has been reported to manifest with dilated cardiomyopathy of variable severity. A male neonate born to non-consanguineous parents of Palestinian origin presented with dysmorphic features, genital abnormalities, talipes equinovarus, and severe, refractory generalized seizures. Additional multi-systemic manifestations developed including dilated cardiomyopathy, hepatomegaly, severe insulin-resistant hyperglycemia, and renal failure, which were ultimately fatal at age 9 months. Electrospray ionization mass spectrometric (ESI-MS) analysis of transferrin identified a type I congenital disorder of glycosylation; next-generation sequencing demonstrated homozygous p.Q483K DOLK mutations that were confirmed in patient fibroblasts to result in severely reduced substrate binding and catalytic activity. This patient expands the phenotype of DOLK-CDG to include anatomic malformations and multi-systemic dysfunction.
PMCID: PMC3909743  PMID: 24144945
Congenital disorder of glycosylation; DOLK-CDG; Dolichol kinase deficiency; Renal failure; Hepatic dysfunction; Insulin-resistant hyperglycemia
5.  Mutations in STT3A and STT3B cause two congenital disorders of glycosylation 
Human Molecular Genetics  2013;22(22):4638-4645.
We describe two unreported types of congenital disorders of glycosylation (CDG) which are caused by mutations in different isoforms of the catalytic subunit of the oligosaccharyltransferase (OST). Each isoform is encoded by a different gene (STT3A or STT3B), resides in a different OST complex and has distinct donor and acceptor substrate specificities with partially overlapping functions in N-glycosylation. The two cases from unrelated consanguineous families both show neurologic abnormalities, hypotonia, intellectual disability, failure to thrive and feeding problems. A homozygous mutation (c.1877T > C) in STT3A causes a p.Val626Ala change and a homozygous intronic mutation (c.1539 + 20G > T) in STT3B causes the other disorder. Both mutations impair glycosylation of a GFP biomarker and are rescued with the corresponding cDNA. Glycosylation of STT3A- and STT3B-specific acceptors is decreased in fibroblasts carrying the corresponding mutated gene and expression of the STT3A (p.Val626Ala) allele in STT3A-deficient HeLa cells does not rescue glycosylation. No additional cases were found in our collection or in reviewing various databases. The STT3A mutation significantly impairs glycosylation of the biomarker transferrin, but the STT3B mutation only slightly affects its glycosylation. Additional cases of STT3B-CDG may be missed by transferrin analysis and will require exome or genome sequencing.
PMCID: PMC3888133  PMID: 23842455
6.  Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy 
Molecular genetics and metabolism  2013;110(3):345-351.
Congenital disorders of glycosylation (CDG) are rare genetic defects mainly in the post-translational modification of proteins via attachment of carbohydrate chains. We describe an infant with the phenotype of a congenital muscular dystrophy, with borderline microcephaly, hypotonia, camptodactyly, severe motor delay, and elevated creatine kinase. Muscle biopsy showed muscular dystrophy and reduced α-dystroglycan immunostaining with glycoepitope-specific antibodies in a pattern diagnostic of dystroglycanopathy. Carbohydrate deficient transferrin testing showed a pattern pointing to a CDG type I. Sanger sequencing of DPM1 (dolichol-P-mannose synthase subunit 1) revealed a novel Gly>Val change c.455 G>T missense mutation resulting in p.Gly152Val) of unknown pathogenicity and deletion/duplication analysis revealed an intragenic deletion from exons 3 to 7 on the other allele. DPM1 activity in fibroblasts was reduced by 80%, while affinity for the substrate was not depressed, suggesting a decrease in the amount of active enzyme. Transfected cells expressing tagged versions of wild type and the p.Gly152Val mutant displayed reduced binding to DPM3, an essential, non-catalytic subunit of the DPM complex, suggesting a mechanism for pathogenicity. The present case is the first individual described with DPM1-CDG (CDG-Ie) to also have clinical and muscle biopsy findings consistent with dystroglycanopathy.
PMCID: PMC3800268  PMID: 23856421
congenital disorder of glycosylation; dystroglycanopathy; congenital muscular dystrophy; DPM1; DPM1-CDG; CDG-Ie; mutation
7.  RFT1 Deficiency in Three Novel CDG Patients 
Human mutation  2009;30(10):10.1002/humu.21085.
The medical significance of N-glycosylation is underlined by a group of inherited human disorders called Congenital Disorders of Glycosylation (CDG). One key step in the biosynthesis of the Glc3Man9Glc-NAc2-PP-dolichol precursor, essential for N-glycosylation, is the translocation of Man5GlcNAc2-PP-dolichol across the endoplasmic reticulum membrane. This step is facilitated by the RFT1 protein. Recently, the first RFT1-deficient CDG (RFT1-CDG) patient was identified and presented a severe N-glycosylation disorder. In the present study, we describe three novel CDG patients with an RFT1 deficiency. The first patient was homozygous for the earlier reported RFT1 missense mutation (c.199C4T; p.R67C), whereas the two other patients were homozygous for the missense mutation c.454A4G (p.K152E) and c.892G4A (p.E298 K), respectively. The pathogenic character of the novel mutations was illustrated by the accumulation of Man5GlcNAc2-PP-dolichol and by reduced recombinant DNase 1 secretion. Both the glycosylation pattern and recombinant DNase 1 secretion could be normalized by expression of normal RFT1 cDNA in the patients’ fibroblasts. The clinical phenotype of these patients comprised typical CDG symptoms in addition to sensorineural deafness, rarely reported in CDG patients. The identification of additional RFT1-deficient patients allowed to delineate the main clinical picture of RFT1-CDG and confirmed the crucial role of RFT1 in Man5GlcNAc2-PPdolichol translocation.
PMCID: PMC3869400  PMID: 19701946
glycosylation; CDG; RFT1; dolichol
8.  Golgi Glycosylation and Human Inherited Diseases 
The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research.
The Golgi glycosylates and sorts intracellular protein and lipid cargos. Impaired performance by mutated Golgi resident proteins creates severe and highly variable pathologies.
PMCID: PMC3181031  PMID: 21709180
9.  Targeted PCR-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation (CDG) 
Genetics in Medicine  2011;13(11):921-932.
Congenital disorders of glycosylation (CDG) are a heterogeneous group of disorders caused by deficient glycosylation, primarily affecting the N-linked pathway. It is estimated that over 40% of CDG patients lack a confirmatory molecular diagnosis. The purpose of this study was to improve molecular diagnosis for CDG by developing and validating a next generation sequencing (NGS) panel for comprehensive mutation detection in 24 genes known to cause CDG.
NGS validation was performed on 12 positive control CDG patients. These samples were blinded as to the disease causing mutations. Both RainDance and Fluidigm platforms were used for sequence enrichment and targeted amplification. The SOLiD platform was used for sequencing the amplified products. Bioinformatic analysis was performed using NextGENe® software.
The disease causing mutations were identified by NGS for all 12 positive controls. Additional variants were also detected in three controls that are known or predicted to impair gene function and may contribute to the clinical phenotype.
We conclude that development of NGS panels in the diagnostic laboratory where multiple genes are implicated in a disorder is more cost-effective and will result in improved and faster patient diagnosis compared with a gene-by-gene approach. Recommendations are also provided for data analysis from the NGS-derived data in the clinical laboratory, which will be important for the widespread use of this technology.
PMCID: PMC3398737  PMID: 21811164
congenital disorders of glycosylation; next generation sequencing; molecular diagnostic testing; target enrichment; bioinformatics
10.  Identification of the first COG-CDG patient of Indian Origin 
Molecular genetics and metabolism  2010;102(3):364-367.
Mutations in the Conserved Oligomeric Golgi (COG) complex give rise to type II congenital disorders of glycosylation (CDG). Thus far, mutations have been identified in 6 of the 8 COG subunits. Here we present data identifying a previously reported CDG-IIx case from Singapore as a new COG4 patient with 2 novel mutations leading to p.E233X and p.L773R; with p.E233X being a de novo mutation. As a result, COG4 protein expression was dramatically reduced, while expression of the other subunits remained unaffected. Analysis of serum N-glycans revealed deficiencies in both sialylation and galactosylation. Furthermore, patient fibroblasts have impaired O-glycosylation. Importantly, patient fibroblasts exhibited a delay in Brefeldin A (BFA) induced retrograde transport, a common characteristic seen in COG deficiencies.
PMCID: PMC3058693  PMID: 21185756
N-Glycosylation; Congenital Disorders of Glycosylation; COG4
11.  SRD5A3 is required for the conversion of polyprenol to dolichol, essential for N-linked protein glycosylation 
Cell  2010;142(2):203-217.
N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the Congenital Disorders of Glycosylation (CDG). We describe a new type of CDG caused by mutations in the steroid 5α-reductase type 3 (SRD5A3) gene. Patients have mental retardation, ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.
PMCID: PMC2940322  PMID: 20637498
N-glycosylation; dolichol; polyprenol; SRD5A3
12.  Molecular and Clinical Characterization of a Moroccan Cog7 Deficient Patient 
Molecular genetics and metabolism  2007;91(2):201-204.
Mutations in the N-linked glycosylation pathway cause rare autosomal recessive defects known as Congenital Disorders of Glycosylation (CDG). A previously reported mutation in the Conserved Oligomeric Golgi complex gene, COG7, defined a new subtype of CDG in a Tunisian family. The mutation disrupted the hetero-octomeric COG complex and altered both N- and O- linked glycosylation. Here we present clinical and biochemical data from a second family with the same mutation.
PMCID: PMC1941618  PMID: 17395513
N-glycosylation; Cog7; Congenital Disorders of Glycosylation
13.  Dissecting Functions of the Conserved Oligomeric Golgi Tethering Complex Using a Cell-Free Assay 
Traffic (Copenhagen, Denmark)  2013;15(1):12-21.
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell-free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.
PMCID: PMC3892563  PMID: 24102787
cell-free reconstitution; congenital disorders of glycosylation; conserved oligomeric Golgi complex; glycosylation enzyme sorting; Golgi apparatus; vesicle tethering

Results 1-13 (13)