PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (110)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Intermedin in the Paraventricular Nucleus Attenuates Cardiac Sympathetic Afferent Reflex in Chronic Heart Failure Rats 
PLoS ONE  2014;9(4):e94234.
Background and Aim
Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats.
Methodology/Principal Findings
Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats.
Conclusion
IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.
doi:10.1371/journal.pone.0094234
PMCID: PMC3978024  PMID: 24709972
2.  Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms 
PLoS ONE  2014;9(4):e93473.
Background
Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin.
Methods and Results
In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity.
Conclusions
Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.
doi:10.1371/journal.pone.0093473
PMCID: PMC3973555  PMID: 24695532
3.  Direct, Acute Effects of Klotho and FGF23 on Vascular Smooth Muscle and Endothelium 
PLoS ONE  2014;9(4):e93423.
Chronic kidney disease (CKD) is regarded as a state of Klotho deficiency and FGF23 excess. In patients with CKD a strong association has been found between increased serum FGF23 and mortality risk, possibly via enhanced atherosclerosis, vascular stiffness, and vascular calcification. The aim of this study was to examine the hypothesis that soluble Klotho and FGF23 exert direct, rapid effects on the vessel wall. We used three in vitro models: mouse aorta rings, human umbilical vein endothelial cells, and human vascular smooth muscle cells (HVSMC). Increasing medium concentrations of soluble Klotho and FGF23 both stimulated aorta contractions and increased ROS production in HVSMC. Klotho partially reverted FGF23 induced vasoconstriction, induced relaxation on phosphate preconstricted aorta and enhanced endothelial NO production in HUVEC. Thus Klotho increased both ROS production in HVSMC and NO production in endothelium. FGF23 induced contraction in phosphate preconstricted vessels and increased ROS production. Phosphate, Klotho and FGF23 together induced no change in vascular tone despite increased ROS production. Moreover, the three compounds combined inhibited relaxation despite increased NO production, probably owing to the concomitant increase in ROS production. In conclusion, although phosphate, soluble Klotho and FGF23 separately stimulate aorta contraction, Klotho mitigates the effects of phosphate and FGF23 on contractility via increased NO production, thereby protecting the vessel to some extent against potentially noxious effects of high phosphate or FGF23 concentrations. This novel observation is in line with the theory that Klotho deficiency is deleterious whereas Klotho sufficiency is protective against the negative effects of phosphate and FGF23 which are additive.
doi:10.1371/journal.pone.0093423
PMCID: PMC3973676  PMID: 24695641
4.  Evaluating Molecular Mechanism of Hypotensive Peptides Interactions with Renin and Angiotensin Converting Enzyme 
PLoS ONE  2014;9(3):e91051.
Our previous study showed that three rapeseed protein-derived peptides (TF, LY and RALP) inhibited the in vitro activities of angiotensin converting enzyme (ACE) and renin. Oral administration of these peptides to spontaneously hypertensive rats led to reductions in systolic blood pressure. In the present work, we examined the potential molecular mechanisms responsible for the ACE- and renin-inhibitory activities of these peptides. Enzyme inhibition kinetics showed competitive, non-competitive and mixed-type peptide-dependent inhibition of renin and ACE activities. Intrinsic fluorescence intensity data showed that LY and RALP have stronger binding effects on ACE molecule compared to that of TF. LY and RALP showed the highest inhibition of ACE and renin activities, respectively. Circular dichroism data showed that the inhibitory mechanism involved extensive peptide-dependent reductions in α-helix and β-sheet fractions of ACE and renin protein conformations. Molecular docking studies confirmed that the higher renin-inhibitory activity of RALP may be due to formation of several hydrogen bonds (H-bonds) with the enzyme’s active site residues. The rapeseed peptides inhibited renin and ACE activities mostly through binding to enzyme active site or non-active sites and forming extensive H-bonds that distorted the normal configuration required for catalysis. Data presented from this work could enhance development of highly potent antihypertensive natural peptides or peptidomimetics.
doi:10.1371/journal.pone.0091051
PMCID: PMC3946342  PMID: 24603692
5.  Associations between Body Mass Index and Park Proximity, Size, Cleanliness and Recreational Facilities 
Purpose
To determine whether body mass index (BMI) is associated with proximity to neighborhood parks, the size of the parks, their cleanliness and the availability of recreational facilities in the parks.
Design
Cross-sectional.
Setting
New York City.
Subjects
13,102 adults (median age 45 years, 36% male) recruited from 2000–2002.
Measures
Anthropometric and socio-demographic data from study subjects were linked to Department of Parks & Recreation data on park space, cleanliness, and facilities. Neighborhood level socio-demographic and park proximity metrics were created for half-mile radius circular buffers around each subject’s residence. Proximity to park space was measured as the proportion of the subject’s neighborhood buffer area that was total park space, large park space (a park > 6 acres) and small park space (a park <=6 acres).
Analysis
Hierarchical linear models were used to determine whether neighborhood park metrics were associated with BMI.
Results
Higher proximity to large park space was significantly associated with lower BMI (beta = −1.69 95% CI = −2.76, −0.63). Across the population distribution of proximity to large park space, compared to subjects living in neighborhoods at the 10th percentile of the distribution, the covariate adjusted average BMI was estimated to be 0.35 kg/m2 lower for those living in neighborhoods at the 90th percentile. The proportion of neighborhood area that was small park space was not associated with BMI, nor was park cleanliness or the availability of recreational facilities.
Conclusions
Neighborhood proximity to large park spaces is modestly associated with lower BMI in a diverse urban population.
doi:10.4278/ajhp.110809-QUAN-304
PMCID: PMC3696994  PMID: 23448416
Obesity; Body mass index; park proximity; neighborhood
6.  Darbepoetin Alpha Reduces Oxidative Stress and Chronic Inflammation in Atherosclerotic Lesions of Apo E Deficient Mice in Experimental Renal Failure 
PLoS ONE  2014;9(2):e88601.
Background
Cardiovascular morbidity and mortality is very important in patients with chronic renal failure. This occurs even in mild impairment of renal function and may be related to oxidative stress and chronic inflammation. The nephrectomized apo E knockout mouse is an accepted model for evaluating atherosclerosis in renal dysfunction. Erythropoietin derivates showed anti-oxidative and anti-inflammatory effects. Therefore, this study evaluates the effects of Darbepoetin on markers of oxidative stress and chronic inflammation in atherosclerotic lesions in apo E knockout mice with renal dysfunction.
Methods
Apo E knockout mice underwent unilateral (Unx, n = 20) or subtotal (Snx, n = 26) nephrectomy or sham operation (Sham, n = 16). Mice of each group were either treated with Darbepoetin or saline solution, a part of Snx mice received a tenfold higher dose of Darbepoetin. The aortic plaques were measured and morphologically characterized. Additional immunhistochemical analyses were performed on tissue samples taken from the heart and the aorta.
Results
Both Unx and Snx mice showed increased expression of markers of oxidative stress and chronic inflammation. While aortic plaque size was not different, Snx mice showed advanced plaque stages when compared to Unx mice. Darbepoetin treatment elevated hematocrit and lowered Nitrotyrosin as one marker of oxidative stress, inflammation in heart and aorta, plaque stage and in the high dose even plaque cholesterol content. In contrast, there was no influence of Darbepoetin on aortic plaque size; high dose Darbepoetin treatment resulted in elevated renal serum parameters.
Conclusion
Darbepoetin showed some protective cardiovascular effects irrespective of renal function, i.e. it improved plaque structure and reduced some signs of oxidative stress and chronic inflammation without affecting plaque size. Nevertheless, the dose dependent adverse effects must be considered as high Darbepoetin treatment elevated serum urea. Elevation of hematocrit might be a favorable effect in anemic Snx animals but a thrombogenic risk in Sham animals.
doi:10.1371/journal.pone.0088601
PMCID: PMC3938414  PMID: 24586350
7.  Cardiac Function and Architecture Are Maintained in a Model of Cardiorestricted Overexpression of the Prorenin-Renin Receptor 
PLoS ONE  2014;9(2):e89929.
The (pro)renin-renin receptor, (P)RR has been claimed to be a novel element of the renin-angiotensin system (RAS). The function of (P)RR has been widely studied in renal and vascular pathology but the cardio-specific function of (P)RR has not been studied in detail. We therefore generated a transgenic mouse (Tg) with cardio-restricted (P)RR overexpression driven by the alpha-MHC promotor. The mRNA expression of (P)RR was ∼170-fold higher (P<0.001) and protein expression ∼5-fold higher (P<0.001) in hearts of Tg mice as compared to non-transgenic (wild type, Wt) littermates. This level of overexpression was not associated with spontaneous cardiac morphological or functional abnormalities in Tg mice. To assess whether (P)RR could play a role in cardiac hypertrophy, we infused ISO for 28 days, but this caused an equal degree of cardiac hypertrophy and fibrosis in Wt and Tg mice. In addition, ischemia-reperfusion injury was performed in Langendorff perfused isolated mouse hearts. We did not observe differences in parameters of cardiac function or damage between Wt and Tg mouse hearts under these conditions. Finally, we explored whether the hypoxia sensing response would be modulated by (P)RR using HeLa cells with and without (P)RR overexpression. We did not establish any effect of (P)RR on expression of genes associated with the hypoxic response. These results demonstrate that cardio-specific overexpression of (P)RR does not provoke phenotypical differences in the heart, and does not affect the hearts’ response to stress and injury. It is concluded that increased myocardial (P)RR expression is unlikely to have a major role in pathological cardiac remodeling.
doi:10.1371/journal.pone.0089929
PMCID: PMC3934958  PMID: 24587131
8.  Treadmill Exercise Training Prevents Myocardial Mechanical Dysfunction Induced by Androgenic-Anabolic Steroid Treatment in Rats 
PLoS ONE  2014;9(2):e87106.
Elevated concentrations of testosterone and its synthetic analogs may induce changes in cardiovascular function. However, the effects of the combination of anabolic/androgenic steroid (AAS) treatment and exercise training on systolic and diastolic cardiac function are poorly understood. In the present study, we aimed to investigate the effects of low-dose steroid treatment (stanozolol) on cardiac contractile parameters when this steroid treatment was combined with exercise training in rats and the effects of chronic steroid treatment on the Frank-Starling (length-tension curves) relationship. Male Wistar rats were randomly assigned to one of four groups: U (untrained), US (untrained and treated with stanozolol 5 mg/kg/week), T (trained, 16 m/min/1 h) and TS (trained and treated with stanozolol 5 mg/kg/week). Continuous exercise training was conducted 5 days/week for 8 consecutive weeks. The speed of the treadmill was gradually increased to a final setting of 16 m/min/1 h. Experiments were divided into two independent series: 1) central hemodynamic analysis for mean arterial blood pressure (MAP) and cardiac output (CO) measurements and 2) isolated papillary muscle preparation in Krebs solution. Stanozolol treatment significantly increased the MAP and the heart size in untrained and trained rats (U 113±2; T 106±2; US 138±8 and TS 130±7 mmHg). Furthermore, stanozolol significantly decreased developed tension and dT/dt (maximal and minimal) in U rats. However, the developed tension was completely restored by training. The Frank/Starling relationship was impaired in rats treated with stanozolol; however, again, training completely restored diastolic function. Taken together, the present data suggest that AAS treatment is able to decrease cardiac performance (systolic and diastolic functions). The combination of stanozolol and physical training improved cardiac performance, including diastolic and systolic functions, independent of changes in central hemodynamic parameters. Therefore, changes in ventricular myocyte calcium transients may play a cardioprotective role.
doi:10.1371/journal.pone.0087106
PMCID: PMC3922753  PMID: 24533053
9.  Maintenance of Hypertensive Hemodynamics Does Not Depend on ROS in Established Experimental Chronic Kidney Disease 
PLoS ONE  2014;9(2):e88596.
While the presence of oxidative stress in chronic kidney disease (CKD) is well established, its relation to hypertensive renal hemodynamics remains unclear. We hypothesized that once CKD is established blood pressure and renal vascular resistance (RVR) no longer depend on reactive oxygen species. CKD was induced by bilateral ablation of 2/3 of each kidney. Compared to age-matched, sham-operated controls all ablated rats showed proteinuria, decreased glomerular filtration rate (GFR), more renal damage, higher mean arterial pressure (MAP), RVR and excretion of oxidative stress markers and hydrogen peroxide, while excretion of stable nitric oxide (NO) metabolites tended to decrease. We compared MAP, RVR, GFR and fractional excretion of sodium under baseline and during acute Tempol, PEG-catalase or vehicle infusion in rats with established CKD vs. controls. Tempol caused marked reduction in MAP in controls (96±5 vs.79±4 mmHg, P<0.05) but not in CKD (130±5 vs. 127±6 mmHg). PEG-catalase reduced MAP in both groups (controls: 102±2 vs. 94±4 mmHg, P<0.05; CKD: 118±4 vs. 110±4 mmHg, P<0.05), but did not normalize MAP in CKD rats. Tempol and PEG-catalase slightly decreased RVR in both groups. Fractional excretion of sodium was increased by both Tempol and PEG-catalase in both groups. PEG-catalase decreased TBARS excretion in both groups. In sum, although oxidative stress markers were increased, MAP and RVR did not depend more on oxidative stress in CKD than in controls. Therefore reactive oxygen species appear not to be important direct determinants of hypertensive renal hemodynamics in this model of established CKD.
doi:10.1371/journal.pone.0088596
PMCID: PMC3922946  PMID: 24533120
10.  High Glucose Induces Podocyte Injury via Enhanced (Pro)renin Receptor-Wnt-β-Catenin-Snail Signaling Pathway 
PLoS ONE  2014;9(2):e89233.
(Pro)renin receptor (PRR) expression is upregulated in diabetes. We hypothesized that PRR contributes to podocyte injury via activation of Wnt-β-catenin-snail signaling pathway. Mouse podocytes were cultured in normal (5 mM) or high (25 mM) D-glucose for 3 days. Compared to normal glucose, high glucose significantly decreased mRNA and protein expressions of podocin and nephrin, and increased mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail, respectively. Confocal microscopy studies showed significant reduction in expression and reorganization of podocyte cytoskeleton protein, F-actin, in response to high glucose. Transwell functional permeability studies demonstrated significant increase in albumin flux through podocytes monolayer with high glucose. Cells treated with high glucose and PRR siRNA demonstrated significantly attenuated mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail; enhanced expressions of podocin mRNA and protein, improved expression and reorganization of F-actin, and reduced transwell albumin flux. We conclude that high glucose induces podocyte injury via PRR-Wnt- β-catenin- snail signaling pathway.
doi:10.1371/journal.pone.0089233
PMCID: PMC3923071  PMID: 24533170
11.  Inhibition of Angiogenesis, Fibrosis and Thrombosis by Tetramethylpyrazine: Mechanisms Contributing to the SDF-1/CXCR4 Axis 
PLoS ONE  2014;9(2):e88176.
Background
Tetramethylpyrazine (TMP) is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation.
Methodology/Principal Findings
Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment.
Conclusions
These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under pathological conditions; thus, the underlying mechanism of TMP might partially contribute to the down-regulation of CXCR4.
doi:10.1371/journal.pone.0088176
PMCID: PMC3914919  PMID: 24505417
12.  Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus as Revealed by Single-Neuron Reconstructions 
PLoS ONE  2014;9(2):e87709.
This study aimed at providing the first detailed morphological description, at the single-cell level, of the rat dorsal raphe nucleus neurons, including the distribution of the VGLUT3 protein within their axons. Electrophysiological guidance procedures were used to label dorsal raphe nucleus neurons with biotinylated dextran amine. The somatodendritic and axonal arborization domains of labeled neurons were reconstructed entirely from serial sagittal sections using a computerized image analysis system. Under anaesthesia, dorsal raphe nucleus neurons display highly regular (1.72±0.50 Hz) spontaneous firing patterns. They have a medium size cell body (9.8±1.7 µm) with 2–4 primary dendrites mainly oriented anteroposteriorly. The ascending axons of dorsal raphe nucleus are all highly collateralized and widely distributed (total axonal length up to 18.7 cm), so that they can contact, in various combinations, forebrain structures as diverse as the striatum, the prefrontal cortex and the amygdala. Their morphological features and VGLUT3 content vary significantly according to their target sites. For example, high-resolution confocal analysis of the distribution of VGLUT3 within individually labeled-axons reveals that serotonin axon varicosities displaying VGLUT3 are larger (0.74±0.03 µm) than those devoid of this protein (0.55±0.03 µm). Furthermore, the percentage of axon varicosities that contain VGLUT3 is higher in the striatum (93%) than in the motor cortex (75%), suggesting that a complex trafficking mechanism of the VGLUT3 protein is at play within highly collateralized axons of the dorsal raphe nucleus neurons. Our results provide the first direct evidence that the dorsal raphe nucleus ascending projections are composed of widely distributed neuronal systems, whose capacity to co-release serotonin and glutamate varies from one forebrain locus to the other.
doi:10.1371/journal.pone.0087709
PMCID: PMC3913638  PMID: 24504335
13.  A Novel Angiotensin I-Converting Enzyme Mutation (S333W) Impairs N-Domain Enzymatic Cleavage of the Anti-Fibrotic Peptide, AcSDKP 
PLoS ONE  2014;9(2):e88001.
Background
Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis.
Results
We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE.
Conclusions and Significance
A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis.
doi:10.1371/journal.pone.0088001
PMCID: PMC3913711  PMID: 24505347
14.  Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Contributes High Risk for Chronic Kidney Disease in Asian Male with Hypertension–A Meta-Regression Analysis of 98 Observational Studies 
PLoS ONE  2014;9(1):e87604.
Background
Associations between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphisms and chronic kidney disease (CKD) have been extensively studied, with most studies reporting that individuals with the D allele have a higher risk. Although some factors, such as ethnicity, may moderate the association between ACE I/D polymorphisms and CKD risk, gender-dependent effects on the CKD risk remain controversial.
Objectives
This study investigated the gender-dependent effects of ACE I/D polymorphisms on CKD risk.
Data sources
PubMed, the Cochrane library, and EMBASE were searched for studies published before January 2013.
Study eligibility criteria, participants, and interventions
Cross-sectional surveys and case–control studies analyzing ACE I/D polymorphisms and CKD were included. They were required to match the following criteria: age >18 years, absence of rare diseases, and Asian or Caucasian ethnicity.
Study appraisal and synthesis methods
The effect of carrying the D allele on CKD risk was assessed by meta-analysis and meta-regression using random-effects models.
Results
Ethnicity [odds ratio (OR): 1.24; 95% confidence interval (CI): 1.08–1.42] and hypertension (OR: 1.55; 95% CI: 1.04–2.32) had significant moderate effects on the association between ACE I/D polymorphisms and CKD risk, but they were not significant in the diabetic nephropathy subgroup. Males had higher OR for the association between ACE I/D polymorphisms and CKD risk than females in Asians but not Caucasians, regardless of adjustment for hypertension (p<0.05). In subgroup analyses, this result was significant in the nondiabetic nephropathy group. Compared with the I allele, the D allele had the highest risk (OR: 3.75; 95% CI: 1.84–7.65) for CKD in hypertensive Asian males.
Conclusions and implications of key findings
The ACE I/D polymorphisms may incur the highest risk for increasing CKD in hypertensive Asian males.
doi:10.1371/journal.pone.0087604
PMCID: PMC3909221  PMID: 24498151
15.  Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice 
PLoS ONE  2014;9(1):e87484.
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.
doi:10.1371/journal.pone.0087484
PMCID: PMC3903672  PMID: 24475296
16.  Angiotensin-Induced Abdominal Aortic Aneurysms in Hypercholesterolemic Mice: Role of Serum Cholesterol and Temporal Effects of Exposure 
PLoS ONE  2014;9(1):e84517.
Objective
Understanding variations in size and pattern of development of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) may inform translational research strategies. Thus, we sought insight into the temporal evolution of AAA in apolipoprotein (apo)E−/− mice.
Approach
A cohort of mice underwent a 4-week pump-mediated infusion of saline (n = 23) or 1500 ng/kg/min of Ang II (n = 85) and AAA development was tracked via in vivo ultrasound imaging. We adjusted for hemodynamic covariates in the regression models for AAA occurrence in relation to time.
Results
The overall effect of time was statistically significant (p<0.001). Compared to day 7 of AngII infusion, there was no decrease in the log odds of AAA occurrence by day 14 (−0.234, p = 0.65), but compared to day 21 and 28, the log odds decreased by 9.07 (p<0.001) and 2.35 (p = 0.04), respectively. Hemodynamic parameters were not predictive of change in aortic diameter (Δ) (SBP, p = 0.66; DBP, p = 0.66). Mean total cholesterol (TC) was higher among mice with large versus small AAA (601 vs. 422 mg/ml, p<0.0001), and the difference was due to LDL. AngII exposure was associated with 0.43 mm (95% CI, 0.27 to 0.61, p<0.0001) increase in aortic diameter; and a 100 mg/dl increase in mean final cholesterol level was associated with a 12% (95% CI, 5.68 to 18.23, p<0.0001) increase in aortic diameter. Baseline cholesterol was not associated with change in aortic diameter (p = 0.86).
Conclusions
These are the first formal estimates of a consistent pattern of Ang II-induced AAA development. The odds of AAA occurrence diminish after the second week of Ang II infusion, and TC is independently associated with AAA size.
doi:10.1371/journal.pone.0084517
PMCID: PMC3900396  PMID: 24465413
17.  AT1 Receptor Blockade Attenuates Insulin Resistance and Myocardial Remodeling in Rats with Diet-Induced Obesity 
PLoS ONE  2014;9(1):e86447.
Background
Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity.
Material and Methods
Wistar-Kyoto (n = 40) rats were subjected to control (C; 3.2 kcal/g) and hypercaloric diets (OB; 4.6 kcal/g) for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day) for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE), and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP), echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2), c-Jun amino-terminal kinases (JNK), insulin receptor subunit β (βIR), and phosphatidylinositol 3-kinase (PI3K) by Western Blot.
Results
Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group.
Conclusion
Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.
doi:10.1371/journal.pone.0086447
PMCID: PMC3900554  PMID: 24466104
18.  Postnatal Growth Defects in Mice with Constitutive Depletion of Central Serotonin 
ACS Chemical Neuroscience  2012;4(1):171-181.
Although the trophic actions of serotonin (5-HT) are well established, only few developmental defects have been reported in mouse strains with constitutive hyposerotonergia. We analyzed postnatal growth and cortical development in three different mutant mouse strains with constitutive reductions in central 5-HT levels. We compared two previously published mouse strains with severe (−95%) depletions of 5-HT, the tryptophan hydroxylase (Tph) 2–/– mouse line and VMAT2sert-cre mice, with a new strain, in which VMAT2 deletion is driven by Pet1 (VMAT2pet1-cre) in 5-HT raphe neurons leading to partial (−75%) reduction in brain 5-HT levels. We find that normal embryonic growth and postnatal growth retardation are common features of all these mouse strains. Postnatal growth retardation varied from mild to severe according to the extent of the brain 5-HT reduction and gender. Normal growth was reinstated in VMAT2sert-cre mice by reconstituting central 5-HT stores. Growth abnormalities could not be linked to altered food intake or temperature control. Morphological study of the cerebral cortex over postnatal development showed a delayed maturation of the upper cortical layers in the VMAT2sert-cre and Tph2–/– mice, but not in the VMAT2pet1-cre mice. No changes in layer-specific gene expression or morphological alterations of barrel cortex development were found. Overall, these observations sustain the notion that central 5-HT signaling is required for the preweaning growth spurt of mouse pups. Brain development appeared to be immune to severe central 5-HT depletion for its overall growth during prenatal life, whereas reduced brain growth and delayed cortical maturation development occurred during postnatal life. Reduced developmental 5-HT signaling during postnatal development might modulate the function and fine structure of neural circuits in ways that affect adult behavior.
doi:10.1021/cn300165x
PMCID: PMC3547491  PMID: 23336056
Cerebral cortex; development; somatic growth; knockout mice; vesicular monoamine transporter; tryptophan hydroxylase; cux1
19.  Characterization of Angiotensin-Converting Enzyme 2 Ectodomain Shedding from Mouse Proximal Tubular Cells 
PLoS ONE  2014;9(1):e85958.
Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney proximal tubule, where it cleaves angiotensin (Ang) II to Ang-(1-7). Urinary ACE2 levels increase in diabetes, suggesting that ACE2 may be shed from tubular cells. The aim of this study was to determine if ACE2 is shed from proximal tubular cells, to characterize ACE2 fragments, and to study pathways for shedding. Studies involved primary cultures of mouse proximal tubular cells, with ACE2 activity measured using a synthetic substrate, and analysis of ACE2 fragments by immunoblots and mass spectrometry. The culture media from mouse proximal tubular cells demonstrated a time-dependent increase in ACE2 activity, suggesting constitutive ACE2 shedding. ACE2 was detected in media as two bands at ∼90 kDa and ∼70 kDa on immunoblots. By contrast, full-length ACE2 appeared at ∼100 kDa in cell lysates or mouse kidney cortex. Mass spectrometry of the two deglycosylated fragments identified peptides matching mouse ACE2 at positions 18-706 and 18-577, respectively. The C-terminus of the 18-706 peptide fragment contained a non-tryptic site, suggesting that Met706 is a candidate ACE2 cleavage site. Incubation of cells in high D-glucose (25 mM) (and to a lesser extent Ang II) for 48–72 h increased ACE2 activity in the media (p<0.001), an effect blocked by inhibition of a disintegrin and metalloproteinase (ADAM)17. High D-glucose increased ADAM17 activity in cell lysates (p<0.05). These data indicate that two glycosylated ACE2 fragments are constitutively shed from mouse proximal tubular cells. ACE2 shedding is stimulated by high D-glucose, at least partly via an ADAM17-mediated pathway. The results suggest that proximal tubular shedding of ACE2 may increase in diabetes, which could enhance degradation of Ang II in the tubular lumen, and increase levels of Ang-(1-7).
doi:10.1371/journal.pone.0085958
PMCID: PMC3893316  PMID: 24454948
20.  Severe Hypoglycemia in a Juvenile Diabetic Rat Model: Presence and Severity of Seizures Are Associated with Mortality 
PLoS ONE  2013;8(12):e83168.
It is well accepted that insulin-induced hypoglycemia can result in seizures. However, the effects of the seizures, as well as possible treatment strategies, have yet to be elucidated, particularly in juvenile or insulin-dependent diabetes mellitus (IDDM). Here we establish a model of diabetes in young rats, to examine the consequences of severe hypoglycemia in this age group; particularly seizures and mortality. Diabetes was induced in post-weaned 22-day-old Sprague-Dawley rats by streptozotocin (STZ) administered intraperitoneally (IP). Insulin IP (15 U/kg), in rats fasted (14–16 hours), induced hypoglycemia, defined as <3.5 mM blood glucose (BG), in 68% of diabetic (STZ) and 86% of control rats (CON). Seizures occurred in 86% of STZ and all CON rats that reached hypoglycemic levels with mortality only occurring post-seizure. The fasting BG levels were significantly higher in STZ (12.4±1.3 mM) than in CON rodents (6.3±0.3 mM), resulting in earlier onset of hypoglycemia and seizures in the CON group. However, the BG at seizure onset was statistically similar between STZ (1.8±0.2 mM) and CON animals (1.6±0.1 mM) as well as between those that survived (S+S) and those that died (S+M) post-seizure. Despite this, the S+M group underwent a significantly greater number of seizure events than the S+S group. 25% glucose administered at seizure onset and repeated with recurrent seizures was not sufficient to mitigate these continued convulsions. Combining glucose with diazepam and phenytoin significantly decreased post-treatment seizures, but not mortality. Intracranial electroencephalograms (EEGs) were recorded in 10 CON and 9 STZ animals. Predictive EEG changes were not observed in these animals that underwent seizures. Fluorojade staining revealed damaged cells in non-seizing STZ animals and in STZ and CON animals post-seizure. In summary, this model of hypoglycemia and seizures in juvenile diabetic rats provides a paradigm for further study of underlying mechanisms. Our data demonstrate that severe hypoglycemia (<2.0 mM) is a necessary precondition for seizures, and the increased frequency of these seizures is associated with mortality.
doi:10.1371/journal.pone.0083168
PMCID: PMC3875447  PMID: 24386156
21.  The Role of Metal Components in the Cardiovascular Effects of PM2.5 
PLoS ONE  2013;8(12):e83782.
Exposure to ambient fine particulate matter (PM2.5) increases risks for cardiovascular disorders (CVD). However, the mechanisms and components responsible for the effects are poorly understood. Based on our previous murine exposure studies, a translational pilot study was conducted in female residents of Jinchang and Zhangye, China, to test the hypothesis that specific chemical component of PM2.5 is responsible for PM2.5 associated CVD. Daily ambient and personal exposures to PM2.5 and 35 elements were measured in the two cities. A total of 60 healthy nonsmoking adult women residents were recruited for measurements of inflammation biomarkers. In addition, circulating endothelial progenitor cells (CEPCs) were also measured in 20 subjects. The ambient levels of PM2.5 were comparable between Jinchang and Zhangye (47.4 and 54.5µg/m3, respectively). However, the levels of nickel, copper, arsenic, and selenium in Jinchang were 82, 26, 12, and 6 fold higher than Zhangye, respectively. The levels of C-reactive protein (3.44±3.46 vs. 1.55±1.13), interleukin-6 (1.65±1.17 vs. 1.09±0.60), and vascular endothelial growth factor (117.6±217.0 vs. 22.7±21.3) were significantly higher in Jinchang. Furthermore, all phenotypes of CEPCs were significantly lower in subjects recruited from Jinchang than those from Zhangye. These results suggest that specific metals may be important components responsible for PM2.5-induced cardiovascular effects and that the reduced capacity of endothelial repair may play a critical role.
doi:10.1371/journal.pone.0083782
PMCID: PMC3873977  PMID: 24386277
22.  The Effects of Intra-Abdominal Hypertension on the Secretory Function of Canine Adrenal Glands 
PLoS ONE  2013;8(12):e81795.
Intra-abdominal hypertension (IAH) can damage multiple organ systems, but the explicit impact on the adrenal gland is unclear. To evaluate the effects of intra-abdominal pressure (IAP) on the secretory function of the adrenal glands, we established canine models of IAH. By comparing morphology; hemodynamics; plasma cortisol, aldosterone, epinephrine, and norepinephrine concentrations; and the expression of IL-1, IL-6, and TNF-α in adrenal gland tissue from these dogs, we found that hemodynamic instability occurred after IAH and that IAH increased the plasma cortisol, aldosterone, epinephrine, and norepinephrine concentrations. Higher IAPs resulted in more significant changes, and the above indicators gradually returned to normal 2 h after decompression. Compared with the sham-operated group, IAH significantly increased IL-1, IL-6, and TNF-α levels in adrenal tissue, with larger increases in the presence of higher IAPs. However, the concentrations of these markers remained higher than those in the sham-operated group despite their decrease after 2 h of decompression. Histopathological examination revealed congestion, red blood cell exudation, and neutrophil infiltration in the adrenal glands when IAP was elevated; these conditions became more significant with more severe IAH. These results suggest that the secretion of adrenal hormones and adrenal gland inflammation are positively correlated with IAP and that abdominal decompression effectively corrects adrenal gland function.
doi:10.1371/journal.pone.0081795
PMCID: PMC3852521  PMID: 24324724
23.  Individual- and School-Level Sociodemographic Predictors of Obesity Among New York City Public School Children 
American Journal of Epidemiology  2012;176(11):986-994.
To identify student- and school-level sociodemographic characteristics associated with overweight and obesity, the authors conducted cross-sectional analyses of data from 624,204 public school children (kindergarten through 12th grade) who took part in the 2007–2008 New York City Fitnessgram Program. The overall prevalence of obesity was 20.3%, and the prevalence of overweight was 17.6%. In multivariate models, the odds of being obese as compared with normal weight were higher for boys versus girls (odds ratio (OR) = 1.39, 95% confidence interval (CI): 1.36, 1.42), for black (OR = 1.11, 95% CI: 1.07, 1.15) and Hispanic (OR = 1.48, 95% CI: 1.43, 1.53) children as compared with white children, for children receiving reduced-price (OR = 1.17, 95% CI: 1.13, 1.21) or free (OR = 1.12, 95% CI: 1.09, 1.15) school lunches as compared with those paying full price, and for US-born students (OR = 1.54, 95% CI: 1.50, 1.58) as compared with foreign-born students. After adjustment for individual-level factors, obesity was associated with the percentage of students who were US-born (across interquartile range (75th percentile vs. 25th), OR = 1.10, 95% CI: 1.07, 1.14) and the percentage of students who received free or reduced-price lunches (across interquartile range, OR = 1.13, 95% CI: 1.10, 1.18). The authors conclude that individual sociodemographic characteristics and school-level sociodemographic composition are associated with obesity among New York City public school students.
doi:10.1093/aje/kws187
PMCID: PMC3626053  PMID: 23132672
child; obesity; overweight; physical fitness; schools
24.  Synaptic Long-Term Potentiation and Depression in the Rat Medial Vestibular Nuclei Depend on Neural Activation of Estrogenic and Androgenic Signals 
PLoS ONE  2013;8(11):e80792.
Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.
doi:10.1371/journal.pone.0080792
PMCID: PMC3827183  PMID: 24265837
25.  Melanocortin 4 Receptors in the Paraventricular Nucleus Modulate the Adipose Afferent Reflex in Rat 
PLoS ONE  2013;8(11):e80295.
Background and Aim
Paraventricular nucleus (PVN) of hypothalamus is an important central component in modulating adipose afferent reflex (AAR). Melanocortin receptors (MC3/4Rs) expressions are found in the hypothalamic PVN. This study was designed to determine the roles of MC3/4Rs in the PVN in modulating the AAR and its downstream signaling pathway in normal rats.
Methodology/Principal Findings
Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats. AAR was evaluated using RSNA and MAP responses to capsaicin injection into the inguinal white adipose tissue (iWAT). Microinjection of the MC3/4R agonist melanotan II (MTII) into the PVN enhanced the AAR. The MC3/4R antagonist SHU9119 or MC4R antagonist HS024 attenuated the AAR and abolished MTII-induced AAR response. The adenylate cyclase (AC) inhibitor SQ22536 or the protein kinase A (PKA) inhibitor Rp-cAMP attenuated the AAR and the effect of MTII on the AAR was abolished by pretreatment with SQ22536 or Rp-cAMP in the PVN. Furthermore, both PVN microinjection of MTII and iWAT injection of capsaicin increased the cAMP level in the PVN. SHU9119 in the PVN abolished the increase in cAMP level which induced by iWAT injection of capsaicin.
Conclusion
The activation of MC4Rs rather than MC3Rs enhances the AAR, and a cAMP-PKA pathway is involved in the effects of MC4Rs in the PVN.
doi:10.1371/journal.pone.0080295
PMCID: PMC3823614  PMID: 24244673

Results 1-25 (110)