PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum 
MicrobiologyOpen  2013;2(6):997-1009.
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum.
doi:10.1002/mbo3.140
PMCID: PMC3892345  PMID: 24311557
Fusarium oxysporum; multiple parallel mineralization; rhizosphere biofilm; soil-borne disease suppression.
2.  Jasmonate-dependent plant defense restricts thrips performance and preference 
BMC Plant Biology  2009;9:97.
Background
The western flower thrips (Frankliniella occidentalis [Pergande]) is one of the most important insect herbivores of cultivated plants. However, no pesticide provides complete control of this species, and insecticide resistance has emerged around the world. We previously reported the important role of jasmonate (JA) in the plant's immediate response to thrips feeding by using an Arabidopsis leaf disc system. In this study, as the first step toward practical use of JA in thrips control, we analyzed the effect of JA-regulated Arabidopsis defense at the whole plant level on thrips behavior and life cycle at the population level over an extended period. We also studied the effectiveness of JA-regulated plant defense on thrips damage in Chinese cabbage (Brassica rapa subsp. pekinensis).
Results
Thrips oviposited more on Arabidopsis JA-insensitive coi1-1 mutants than on WT plants, and the population density of the following thrips generation increased on coi1-1 mutants. Moreover, thrips preferred coi1-1 mutants more than WT plants. Application of JA to WT plants before thrips attack decreased the thrips population. To analyze these important functions of JA in a brassica crop plant, we analyzed the expression of marker genes for JA response in B. rapa. Thrips feeding induced expression of these marker genes and significantly increased the JA content in B. rapa. Application of JA to B. rapa enhanced plant resistance to thrips, restricted oviposition, and reduced the population density of the following generation.
Conclusion
Our results indicate that the JA-regulated plant defense restricts thrips performance and preference, and plays an important role in the resistance of Arabidopsis and B. rapa to thrips damage.
doi:10.1186/1471-2229-9-97
PMCID: PMC2724403  PMID: 19635132
3.  Genetic Variation at the vlsE Locus of Borrelia burgdorferi within Ticks and Mice over the Course of a Single Transmission Cycle 
Journal of Bacteriology  2003;185(15):4432-4441.
The Lyme disease spirochete, Borrelia burgdorferi, causes a persistent infection in the vertebrate host even though infected animals mount an active immune response against the spirochete. One strategy used by the spirochete to evade vertebrate host immunity is to vary the structure and expression of outer membrane antigens. The vlsE locus represents the best-studied example of antigenic variation in B. burgdorferi. During vertebrate host infection, recombination between the active vlsE locus and silent, partial vlsE copies leads to gene conversion events and the generation of novel alleles at the expression site. In the present study, we followed a population of B. burgdorferi organisms moving through vertebrate host and tick stages to complete one transmission cycle. The major goal of the study was to determine if the vlsE locus was subject to different selective pressure and/or recombination frequency at different stages of the spirochete's life cycle. We report here that the vlsE genetic diversity generated within the rodent host was maintained through the larval and nymphal tick stages. Therefore, naturally infected ticks are likely to transmit spirochete populations with multiple vlsE alleles into naive vertebrate hosts. Although vlsE genetic diversity in mice was maintained through tick stages, the dominant vlsE alleles were different between tick stages as well as between individual ticks. We propose that population-level bottlenecks experienced by spirochetes, especially during the larval-to-nymphal molt, are responsible for individual infected ticks harboring different dominant vlsE alleles. Although vlsE genetic diversity is maintained through tick stages, the VlsE protein is unlikely to be of functional importance in the vector, because the protein was expressed by very few (<1%) bacteria in the vector.
doi:10.1128/JB.185.15.4432-4441.2003
PMCID: PMC165742  PMID: 12867452

Results 1-3 (3)