Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Involvement of MAP3K8 and miR-17-5p in Poor Virologic Response to Interferon-Based Combination Therapy for Chronic Hepatitis C 
PLoS ONE  2014;9(5):e97078.
Despite advances in chronic hepatitis C treatment, a proportion of patients respond poorly to treatment. This study aimed to explore hepatic mRNA and microRNA signatures involved in hepatitis C treatment resistance. Global hepatic mRNA and microRNA expression profiles were compared using microarray data between treatment responses. Quantitative real-time polymerase chain reaction validated the gene signatures from 130 patients who were infected with hepatitis C virus genotype 1b and treated with pegylated interferon-alpha and ribavirin combination therapy. The correlation between mRNA and microRNA was evaluated using in silico analysis and in vitro siRNA and microRNA inhibition/overexpression experiments. Multivariate regression analysis identified that the independent variables IL28B SNP rs8099917, hsa-miR-122-5p, hsa-miR-17-5p, and MAP3K8 were significantly associated with a poor virologic response. MAP3K8 and miR-17-5p expression were inversely correlated with treatment response. Furthermore, miR-17-5p repressed HCV production by targeting MAP3K8. Collectively, the data suggest that several molecules and the inverse correlation between mRNA and microRNA contributed to a host genetic refractory hepatitis C treatment response.
PMCID: PMC4018277  PMID: 24819603
2.  LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis 
SpringerPlus  2014;3:221.
Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients.
Here, we report that PLK cleaves LAP between R58 and L59 residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients.
The N-terminal side LAP-DP ending at R58 (R58 LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L59 (L59 LAP-DP) was not detectable. The R58 LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells.
These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.
Electronic supplementary material
The online version of this article (doi:10.1186/2193-1801-3-221) contains supplementary material, which is available to authorized users.
PMCID: PMC4033717  PMID: 24877031
Biomarker; Hepatic stellate cells; Liver fibrosis; Plasma kallikrein (PLK); TGF-β activation
3.  Augmentation of Antitumor Immunity by Fusions of Ethanol-Treated Tumor Cells and Dendritic Cells Stimulated via Dual TLRs through TGF-β1 Blockade and IL-12p70 Production 
PLoS ONE  2013;8(5):e63498.
The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed “eat-me” signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.
PMCID: PMC3663747  PMID: 23717436
4.  Combined TLR2/4-Activated Dendritic/Tumor Cell Fusions Induce Augmented Cytotoxic T Lymphocytes 
PLoS ONE  2013;8(3):e59280.
Induction of antitumor immunity by dendritic cell (DC)-tumor fusion cells (DC/tumor) can be modulated by their activation status. In this study, to address optimal status of DC/tumor to induce efficient antigen-specific cytotoxic T lymphocytes (CTLs), we have created various types of DC/tumor: 1) un-activated DC/tumor; 2) penicillin-killed Streptococcus pyogenes (OK-432; TLR4 agonist)-activated DC/tumor; 3) protein-bound polysaccharides isolated from Coriolus versicolor (PSK; TLR2 agonist)-activated DC/tumor; and 4) Combined OK-432- and PSK-activated DC/tumor. Moreover, we assessed the effects of TGF-β1 derived from DC/tumor on the induction of MUC1-specific CTLs. Combined TLR2- and TLR4-activated DC/tumor overcame immune-suppressive effect of TGF-β1 in comparison to those single activated or un-activated DC/tumor as demonstrated by: 1) up-regulation of MHC class II and CD86 expression on DC/tumor; 2) increased fusion efficiency; 3) increased production of fusions derived IL-12p70; 4) activation of CD4+ and CD8+ T cells that produce high levels of IFN-γ; 5) augmented induction of CTL activity specific for MUC1; and 6) superior efficacy in inhibiting CD4+CD25+Foxp3+ T cell generation. However, DC/tumor-derived TGF-β1 reduced the efficacy of DC/tumor vaccine in vitro. Incorporating combined TLRs-activation and TGF-β1-blockade of DC/tumor may enhance the effectiveness of DC/tumor-based cancer vaccines and have the potential applicability to the field of adoptive immunotherapy.
PMCID: PMC3598755  PMID: 23555011
5.  Several factors including ITPA polymorphism influence ribavirin-induced anemia in chronic hepatitis C 
AIM: To construct formulae for predicting the likelihood of ribavirin-induced anemia in pegylated interferon α plus ribavirin for chronic hepatitis C.
METHODS: Five hundred and sixty-one Japanese patients with hepatitis C virus genotype 1b who had received combination treatment were enrolled and assigned randomly to the derivation and confirmatory groups. Single nucleotide polymorphisms at or nearby ITPA were genotyped by real-time detection polymerase chain reaction. Factors influencing significant anemia (hemoglobin concentration < 10.0 g/dL at week 4 of treatment) and significant hemoglobin decline (declining concentrations > 3.0 g/dL at week 4) were analyzed using multiple regression analyses. Prediction formulae were constructed by significantly independent factors.
RESULTS: Multivariate analysis for the derivation group identified four independent factors associated with significant hemoglobin decline: hemoglobin decline at week 2 [P = 3.29 × 10-17, odds ratio (OR) = 7.54 (g/dL)], estimated glomerular filtration rate [P = 2.16 × 10-4, OR = 0.962 (mL/min/1.73 m2)], rs1127354 (P = 5.75 × 10-4, OR = 10.94) and baseline hemoglobin [P = 7.86 × 10-4, OR = 1.50 (g/dL)]. Using the model constructed by these factors, positive and negative predictive values and predictive accuracy were 79.8%, 88.8% and 86.2%, respectively. For the confirmatory group, they were 83.3%, 91.0% and 88.3%. These factors were closely correlated with significant anemia. However, the model could not be constructed, because no patients with rs1127354 minor genotype CA/AA had significant anemia.
CONCLUSION: Reliable formulae for predicting the likelihood of ribavirin-induced anemia were constructed. Such modeling may be useful in developing individual tailoring and optimization of ribavirin dosage.
PMCID: PMC3491594  PMID: 23139603
Chronic hepatitis C virus infection; Ribavirin; Pegylated interferon α; Prediction model; Hemolytic anemia; Single nucleotide polymorphism
6.  Current Immunotherapeutic Approaches in Pancreatic Cancer 
Pancreatic cancer is a highly aggressive and notoriously difficult to treat. As the vast majority of patients are diagnosed at advanced stage of the disease, only a small population is curative by surgical resection. Although gemcitabine-based chemotherapy is typically offered as standard of care, most patients do not survive longer than 6 months. Thus, new therapeutic approaches are needed. Pancreatic cancer cells that develop gemcitabine resistance would still be suitable targets for immunotherapy. Therefore, one promising treatment approach may be immunotherapy that is designed to target pancreatic-cancer-associated antigens. In this paper, we detail recent work in immunotherapy and the advances in concept of combination therapy of immunotherapy and chemotherapy. We offer our perspective on how to increase the clinical efficacy of immunotherapies for pancreatic cancer.
PMCID: PMC3172984  PMID: 21922022
7.  Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines 
Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.
PMCID: PMC3085507  PMID: 21541197
8.  Useful detection of CD147 (EMMPRIN) for pathological diagnosis of early hepatocellular carcinoma in needle biopsy samples 
AIM: To make clear whether CD147 (EMMPRIN) expression in pathological tumor samples with a fine-needle aspiration biopsy is useful for pathological diagnosis of early hepatocellular carcinoma (HCC).
METHODS: Twenty-two patients (15 men and 7 women; median age 68 years, range 56-81 years) underwent a liver tissue biopsy in order to make a diagnosis of HCC. Paraffin-embedded liver biopsy tissue samples from 22 patients were stained with anti-CD147 antibody, murine monoclonal antibody 12C3 (MAb12C3) for immunohistochemical analysis. An immunohistochemical analysis of CD147 was performed and the degree of staining compared between tumor and non-tumor tissue. In addition, the degree of staining within tumor tissue was compared according to a number of clinicopathological variables.
RESULTS: The degree of staining of CD147 was significantly higher in tumor tissues than non-tumor tissues, even in tumors less than 15 mm in diameter. The expression of this protein was significantly elevated in HCC tissue specimens from patients with a low value of serum AST and γ-GTP.
CONCLUSION: CD147 serves potentially as a pathological target for cancer detection of early HCC.
PMCID: PMC4171141  PMID: 17589939
CD147; Hepatocellular carcinoma; Needle biopsy
9.  Frequent loss of heterozygosity in two distinct regions, 8p23.1 and 8p22, in hepatocellular carcinoma 
AIM: To identify the precise location of putative tumor suppressor genes (TSGs) on the short arm of chromosome 8 in patients with hepatocellular carcinoma (HCC).
METHODS: We used 16 microsatellite markers informative in Japanese patients, which were selected from 61 published markers, on 8p, to analyze the frequency of loss of heterozygosity (LOH) in each region in 33 cases (56 lesions) of HCC.
RESULTS: The frequency of LOH at 8p23.2-21 with at least one marker was 63% (20/32) in the informative cases. More specifically, the frequency of LOH at 8p23.2, 8p23.1, 8p22, and 8p21 was 6%, 52%, 47%, and 13% in HCC cases. The LOH was significantly more frequent at 8p23.1 and 8p22 than the average (52% vs 22%, P = 0.0008; and 47% vs 22%, P = 0.004, respectively) or others sites, such as 8p23.2 (52% vs 6%, P = 0.003; 47% vs 22%, P = 0.004) and 8p21 (52% vs 13%, P = 0.001; 47% vs 13%, P = 0.005) in liver cancer on the basis of cases. Notably, LOH frequency was significantly higher at D8S277, D8S503, D8S1130, D8S552, D8S254 and D8S258 than at the other sites. However, no allelic loss was detected at any marker on 8p in the lesions of nontumor liver tissues.
CONCLUSION: Deletion of 8p, especially the loss of 8p23.1-22, is an important event in the initiation or promotion of HCC. Our results should be useful in identifying critical genes that might lie at 8p23.1-22.
PMCID: PMC4146873  PMID: 17373745
Loss of heterozygosity; Chromosome; Hepatocarcinogenesis; Hepatocellular carcinoma; 8p
10.  An autopsy case showing massive fibrinoid necrosis of the portal tracts of the liver with cholangiographic findings similar to those of primary sclerosing cholangitis 
An 81-year-old Japanese man with jaundice was strongly suspected clinically of having primary sclerosing cholangitis based on clinical examinations and later died of hepatic failure. The entire course of the disease lasted about 10 mo. The autopsy revealed extensive fibrinoid necrosis in the liver, kidney, spleen, pancreas, lung, lymph nodes, and pleura. Particularly extensive fibrinoid necrosis in the portal tracts of the liver induced severe stenoses of the intrahepatic bile ducts, resulting in cholestasis in association with prominent liver injury. There were no findings indicating primary sclerosing cholangitis. The hepatic lesions in this case did not coincide with any known disease including collagen diseases. To clarify the cause of irregular stenoses of the intrahepatic biliary trees on cholangiographic findings, we postulate that some form of immunological derangement might be involved in pathogenesis of fibrinoid necrosis. However, the true etiology remains unknown.
PMCID: PMC4065992  PMID: 17278236
Jaundice; Fibrinoid necrosis; Cholangio-graphy; Primary sclerosing cholangitis; Liver; Autopsy

Results 1-10 (10)