PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands 
Parasites & Vectors  2011;4:17.
Background
In The Netherlands, the incidence of Lyme borreliosis is on the rise. Besides its causative agent, Borrelia burgdorferi s.l., other potential pathogens like Rickettsia, Babesia and Ehrlichia species are present in Ixodes ricinus ticks. The risk of disease associated with these microorganisms after tick-bites remains, however, largely unclear. A prospective study was performed to investigate how many persons with tick-bites develop localized or systemic symptoms and whether these are associated with tick-borne microorganisms.
Results
In total, 297 Ixodes ricinus ticks were collected from 246 study participants who consulted a general practitioner on the island of Ameland for tick bites. Ticks were subjected to PCR to detect DNA of Borrelia burgdorferi s.l., Rickettsia spp., Babesia spp. or Ehrlichia/Anaplasma spp.. Sixteen percent of the collected ticks were positive for Borrelia burgdorferi s.l., 19% for Rickettsia spp., 12% for Ehrlichia/Anaplasma spp. and 10% for Babesia spp.. At least six months after the tick bite, study participants were interviewed on symptoms by means of a standard questionnaire. 14 out of 193 participants (8.3%) reported reddening at the bite site and 6 participants (4.1%) reported systemic symptoms. No association between symptoms and tick-borne microorganisms was found. Attachment duration ≥24 h was positively associated with reddening at the bite site and systemic symptoms. Using logistic regression techniques, reddening was positively correlated with presence of Borrelia afzelii, and having 'any symptoms' was positively associated with attachment duration.
Conclusion
The risk of contracting acute Lyme borreliosis, rickettsiosis, babesiosis or ehrlichiosis from a single tick bite was <1% in this study population.
doi:10.1186/1756-3305-4-17
PMCID: PMC3050846  PMID: 21310036
2.  Antibody response against Trichinella spiralis in experimentally infected rats is dose dependent 
Veterinary Research  2011;42(1):113.
Domestic pigs are the main representatives of the domestic cycle of Trichinella spiralis that play a role in transmission to humans. In Europe, backyard pigs of small household farms are the most important risks for humans to obtain trichinellosis. Rats might play a role in the transmission of Trichinella spiralis from domestic to sylvatic animals and vice versa. In order to be able to investigate the role of wild rats in the epidemiology of T. spiralis in The Netherlands, we studied the dynamics of antibody response after T. spiralis infections in experimental rats, using infection doses ranging from very low (10 muscle larvae, ML, per rat) to very high (16 000 ML per rat). To evaluate the feasibility of rats surviving high infection doses with T. spiralis, clinical and pathological parameters were quantified. Serological tools for detecting T. spiralis in rats were developed to quantitatively study the correlation between parasite load and immunological response. The results show that an infection dose-dependent antibody response was developed in rats after infection with as low as 10 ML up to a level of 10 000 ML. A positive correlation was found between the number of recovered ML and serum antibody levels, although specific measured antibody levels correspond to a wide range of LPG values. Serum antibodies of rats that were infected even with 10 or 25 ML could readily be detected by use of the T. spiralis western blot 2 weeks post infection. We conclude that based on these low infection doses, serologic tests are a useful tool to survey T. spiralis in wild rats.
doi:10.1186/1297-9716-42-113
PMCID: PMC3247182  PMID: 22129040
3.  Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species 
Parasites & Vectors  2009;2:41.
Background
Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years.
Results
The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar.
Conclusion
Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.
doi:10.1186/1756-3305-2-41
PMCID: PMC2743653  PMID: 19732416

Results 1-3 (3)