PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  PhysBinder: improving the prediction of transcription factor binding sites by flexible inclusion of biophysical properties 
Nucleic Acids Research  2013;41(Web Server issue):W531-W534.
The most important mechanism in the regulation of transcription is the binding of a transcription factor (TF) to a DNA sequence called the TF binding site (TFBS). Most binding sites are short and degenerate, which makes predictions based on their primary sequence alone somewhat unreliable. We present a new web tool that implements a flexible and extensible algorithm for predicting TFBS. The algorithm makes use of both direct (the sequence) and several indirect readout features of protein–DNA complexes (biophysical properties such as bendability or the solvent-excluded surface of the DNA). This algorithm significantly outperforms state-of-the-art approaches for in silico identification of TFBS. Users can submit FASTA sequences for analysis in the PhysBinder integrative algorithm and choose from >60 different TF-binding models. The results of this analysis can be used to plan and steer wet-lab experiments. The PhysBinder web tool is freely available at http://bioit.dmbr.ugent.be/physbinder/index.php.
doi:10.1093/nar/gkt288
PMCID: PMC3692127  PMID: 23620286
2.  A flexible integrative approach based on random forest improves prediction of transcription factor binding sites 
Nucleic Acids Research  2012;40(14):e106.
Transcription factor binding sites (TFBSs) are DNA sequences of 6–15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA. We make use of the random forest algorithm to flexibly exploit both types of information. Results in this study show that both the structural method and the NPD method can be valuable for the prediction of TFBSs. Moreover, their predictive values seem to be complementary, even to the widely used position weight matrix (PWM) method. This led us to combine all three methods. Results obtained for five eukaryotic TFs with different DNA-binding domains show that our method improves classification accuracy for all five eukaryotic TFs compared with other approaches. Additionally, we contrast the results of seven smaller prokaryotic sets with high-quality data and show that with the use of high-quality data we can significantly improve prediction performance. Models developed in this study can be of great use for gaining insight into the mechanisms of TF binding.
doi:10.1093/nar/gks283
PMCID: PMC3413102  PMID: 22492513
3.  Involvement of Members of the Cadherin Superfamily in Cancer 
We review the role of cadherins and cadherin-related proteins in human cancer. Cellular and animal models for human cancer are also dealt with whenever appropriate. E-cadherin is the prototype of the large cadherin superfamily and is renowned for its potent malignancy suppressing activity. Different mechanisms for inactivating E-cadherin/CDH1 have been identified in human cancers: inherited and somatic mutations, aberrant protein processing, increased promoter methylation, and induction of transcriptional repressors such as Snail and ZEB family members. The latter induce epithelial mesenchymal transition, which is also associated with induction of “mesenchymal” cadherins, a hallmark of tumor progression. VE-cadherin/CDH5 plays a role in tumor-associated angiogenesis. The atypical T-cadherin/CDH13 is often silenced in cancer cells but up-regulated in tumor vasculature. The review also covers the status of protocadherins and several other cadherin-related molecules in human cancer. Perspectives for emerging cadherin-related anticancer therapies are given.
The epithelial–mesenchymal transition is a critical stage in malignancy. Changes in the type and levels of cadherins a cell expresses can promote or suppress this transition.
doi:10.1101/cshperspect.a003129
PMCID: PMC2882122  PMID: 20457567
4.  Efficient and User-Friendly Pluripotin-based Derivation of Mouse Embryonic Stem Cells 
Stem Cell Reviews  2011;8(3):768-778.
Classic derivation of mouse embryonic stem (ES) cells from blastocysts is inefficient, strain-dependent, and requires expert skills. Over recent years, several major improvements have greatly increased the success rate for deriving mouse ES cell lines. The first improvement was the establishment of a user-friendly and reproducible medium-alternating protocol that allows isolation of ES cells from C57BL/6 transgenic mice with efficiencies of up to 75%. A recent report describes the use of this protocol in combination with leukemia inhibitory factor and pluripotin treatment, which made it possible to obtain ES cells from F1 strains with high efficiency. We report modifications of these protocols for user-friendly and reproducible derivation of mouse ES cells with efficiencies of up to 100%. Our protocol involves a long initial incubation of primary outgrowths from blastocysts with pluripotin, which results in the formation of large spherical outgrowths. These outgrowths are morphologically distinct from classical inner cell mass (ICM) outgrowths and can be easily picked and trypsinized. Pluripotin was omitted after the first trypsinization because we found that it blocks attachment of ES cells to the feeder layer and its removal facilitated formation of ES cell colonies. The newly established ES cells exhibited normal karyotypes and generated chimeras. In summary, our user-friendly modified protocol allows formation of large spherical ICM outgrowths in a robust and reliable manner. These outgrowths gave rise to ES cell lines with success rates of up to 100%.
doi:10.1007/s12015-011-9323-x
PMCID: PMC3412084  PMID: 22011883
Blastocyst outgrowth; Inner cell mass; Embryonic stem cell derivation; Pluripotin; Efficiency
5.  ConTra v2: a tool to identify transcription factor binding sites across species, update 2011 
Nucleic Acids Research  2011;39(Web Server issue):W74-W78.
Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v2 web server allows easy visualization and exploration of predicted transcription factor binding sites in any genomic region surrounding coding or non-coding genes. In this new version, users can choose from nine reference organisms ranging from human to yeast. ConTra v2 can analyze promoter regions, 5′-UTRs, 3′-UTRs and introns or any other genomic region of interest. Hundreds of position weight matrices are available to choose from, but the user can also upload any other matrices for detecting specific binding sites. A typical analysis is run in four simple steps of choosing the gene, the transcript, the region of interest and then selecting one or more transcription factor binding sites. The ConTra v2 web server is freely available at http://bioit.dmbr.ugent.be/contrav2/index.php.
doi:10.1093/nar/gkr355
PMCID: PMC3125763  PMID: 21576231
6.  The transcription factor ZEB1 (δEF1) represses Plakophilin 3 during human cancer progression 
FEBS letters  2007;581(8):1617-1624.
Plakophilin 3 (PKP3) belongs to the p120ctn family of armadillo-related proteins predominantly functioning in desmosome formation. Here we report that PKP3 is transcriptionally repressed by the E-cadherin repressor ZEB1 in metastatic cancer cells. ZEB1 physically associates with two conserved E-box elements in the PKP3 promoter and partially represses the activity of corresponding human and mouse PKP3 promoter fragments in reporter gene assays. In human tumours ZEB1 is upregulated in invasive cancer cells at the tumour–host interface, which is accompanied by downregulation of PKP3 expression levels. Hence, the transcriptional repression of PKP3 by ZEB1 contributes to ZEB1-mediated disintegration of intercellular adhesion and epithelial to mesenchymal transition.
doi:10.1016/j.febslet.2007.03.026
PMCID: PMC2938730  PMID: 17391671
Epithelial to mesenchymal transition; Invasion; Transcription; Desmosomes; Cell adhesion
7.  The Transcriptional Repressor Kaiso Localizes at the Mitotic Spindle and Is a Constituent of the Pericentriolar Material 
PLoS ONE  2010;5(2):e9203.
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
doi:10.1371/journal.pone.0009203
PMCID: PMC2821401  PMID: 20169156
8.  Low nucleosome occupancy is encoded around functional human transcription factor binding sites 
BMC Genomics  2008;9:332.
Background
Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs) on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs) results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors.
Results
Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs) surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration.
In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences.
Conclusion
We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.
doi:10.1186/1471-2164-9-332
PMCID: PMC2490708  PMID: 18627598
9.  A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes 
PLoS ONE  2008;3(5):e2207.
The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.
doi:10.1371/journal.pone.0002207
PMCID: PMC2386287  PMID: 18493581
10.  ConTra: a promoter alignment analysis tool for identification of transcription factor binding sites across species 
Nucleic Acids Research  2008;36(Web Server issue):W128-W132.
Transcription factors (TFs) are key components in signaling pathways, and the presence of their binding sites in the promoter regions of DNA is essential for their regulation of the expression of the corresponding genes. Orthologous promoter sequences are commonly used to increase the specificity with which potentially functional transcription factor binding sites (TFBSs) are recognized and to detect possibly important similarities or differences between the different species. The ConTra (conserved TFBSs) web server provides the biologist at the bench with a user-friendly tool to interactively visualize TFBSs predicted using either TransFac (1) or JASPAR (2) position weight matrix libraries, on a promoter alignment of choice. The visualization can be preceded by a simple scoring analysis to explore which TFs are the most likely to bind to the promoter of interest. The ConTra web server is available at http://bioit.dmbr.ugent.be/ConTra/index.php.
doi:10.1093/nar/gkn195
PMCID: PMC2447729  PMID: 18453628
11.  A distance difference matrix approach to identifying transcription factors that regulate differential gene expression 
Genome Biology  2007;8(5):R83.
A distance difference matrix method is presented for identifying transcription factor binding sites of secondary factors responsible for the different responses of the target genes of one transcription factor.
We introduce a method that considers target genes of a transcription factor, and searches for transcription factor binding sites (TFBSs) of secondary factors responsible for differential responses among these targets. Based on the distance difference matrix concept, the method simultaneously integrates statistical overrepresentation and co-occurrence of TFBSs. Our approach is validated on datasets of differentially regulated human genes and is shown to be highly effective in detecting TFBSs responsible for the observed differential gene expression.
doi:10.1186/gb-2007-8-5-r83
PMCID: PMC1929144  PMID: 17504544
12.  A new generation of JASPAR, the open-access repository for transcription factor binding site profiles 
Nucleic Acids Research  2005;34(Database issue):D95-D97.
JASPAR is the most complete open-access collection of transcription factor binding site (TFBS) matrices. In this new release, JASPAR grows into a meta-database of collections of TFBS models derived by diverse approaches. We present JASPAR CORE—an expanded version of the original, non-redundant collection of annotated, high-quality matrix-based transcription factor binding profiles, JASPAR FAM—a collection of familial TFBS models and JASPAR phyloFACTS—a set of matrices computationally derived from statistically overrepresented, evolutionarily conserved regulatory region motifs from mammalian genomes. JASPAR phyloFACTS serves as a non-redundant extension to JASPAR CORE, enhancing the overall breadth of JASPAR for promoter sequence analysis. The new release of JASPAR is available at .
doi:10.1093/nar/gkj115
PMCID: PMC1347477  PMID: 16381983
13.  SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions 
Nucleic Acids Research  2005;33(20):6566-6578.
SIP1/ZEB2 is a member of the δEF-1 family of two-handed zinc finger nuclear factors. The expression of these transcription factors is associated with epithelial mesenchymal transitions (EMT) during development. SIP1 is also expressed in some breast cancer cell lines and was detected in intestinal gastric carcinomas, where its expression is inversely correlated with that of E-cadherin. Here, we show that expression of SIP1 in human epithelial cells results in a clear morphological change from an epithelial to a mesenchymal phenotype. Induction of this epithelial dedifferentiation was accompanied by repression of several cell junctional proteins, with concomitant repression of their mRNA levels. Besides E-cadherin, other genes coding for crucial proteins of tight junctions, desmosomes and gap junctions were found to be transcriptionally regulated by the transcriptional repressor SIP1. Moreover, study of the promoter regions of selected genes by luciferase reporter assays and chromatin immunoprecipitation shows that repression is directly mediated by SIP1. These data indicate that, during epithelial dedifferentiation, SIP1 represses in a coordinated manner the transcription of genes coding for junctional proteins contributing to the dedifferentiated state; this repression occurs by a general mechanism mediated by Smad Interacting Protein 1 (SIP1)-binding sites.
doi:10.1093/nar/gki965
PMCID: PMC1298926  PMID: 16314317
14.  GATA-4 and MEF2C transcription factors control the tissue-specific expression of the αT-catenin gene CTNNA3 
Nucleic Acids Research  2004;32(14):4155-4165.
αT-catenin is a recently identified member of the α-catenin family of cell–cell adhesion molecules. Its expression is restricted mainly to cardiomyocytes, although it is also expressed in skeletal muscle, testis and brain. Like other α-catenins, αT-catenin provides an indispensable link between a cadherin-based adhesion complex and the actin cytoskeleton, resulting in strong cell–cell adhesion. We show here that the tissue-specificity of αT-catenin expression is controlled by its promoter region. By in silico analysis, we found that the αT-catenin promoter contains several binding sites for cardiac and muscle-specific transcription factors. By co-transfection studies in P19 embryonal carcinoma cells, we demonstrated that MEF2C and GATA-4 each have an activating effect on the αT-catenin promoter. Transfections with wild-type and mutant promoter constructs in cardiac HL-1 cells indicated that one GATA box is absolutely required for high αT-catenin promoter activity in these cells. Furthermore, we showed that the GATA-4 transcription factor specifically binds and activates the αT-catenin promoter in vivo in cardiac HL-1 cells. In vivo promoter analysis in transgenic mice revealed that the isolated αT-catenin promoter region could direct the tissue-specific expression of a LacZ reporter gene in concordance with endogenous αT-catenin expression.
doi:10.1093/nar/gkh727
PMCID: PMC514362  PMID: 15302915
15.  Combined subtractive cDNA cloning and array CGH: an efficient approach for identification of overexpressed genes in DNA amplicons 
BMC Genomics  2004;5:11.
Background
Activation of proto-oncogenes by DNA amplification is an important mechanism in the development and maintenance of cancer cells. Until recently, identification of the targeted genes relied on labour intensive and time consuming positional cloning methods. In this study, we outline a straightforward and efficient strategy for fast and comprehensive cloning of amplified and overexpressed genes.
Results
As a proof of principle, we analyzed neuroblastoma cell line IMR-32, with at least two amplification sites along the short arm of chromosome 2. In a first step, overexpressed cDNA clones were isolated using a PCR based subtractive cloning method. Subsequent deposition of these clones on a custom microarray and hybridization with IMR-32 DNA, resulted in the identification of clones that were overexpressed due to gene amplification. Using this approach, amplification of all previously reported amplified genes in this cell line was detected. Furthermore, four additional clones were found to be amplified, including the TEM8 gene on 2p13.3, two anonymous transcripts, and a fusion transcript, resulting from 2p13.3 and 2p24.3 fused sequences.
Conclusions
The combinatorial strategy of subtractive cDNA cloning and array CGH analysis allows comprehensive amplicon dissection, which opens perspectives for improved identification of hitherto unknown targeted oncogenes in cancer cells.
doi:10.1186/1471-2164-5-11
PMCID: PMC365025  PMID: 15018647
Amplification; Overexpression; Oncogene; SSH; Array CGH; Neuroblastoma
16.  Defining desmosomal plakophilin-3 interactions 
The Journal of Cell Biology  2003;161(2):403-416.
Plakophilin 3 (PKP3) is a recently described armadillo protein of the desmosomal plaque, which is synthesized in simple and stratified epithelia. We investigated the localization pattern of endogenous and exogenous PKP3 and fragments thereof. The desmosomal binding properties of PKP3 were determined using yeast two-hybrid, coimmunoprecipitation and colocalization experiments. To this end, novel mouse anti-PKP3 mAbs were generated. We found that PKP3 binds all three desmogleins, desmocollin (Dsc) 3a and -3b, and possibly also Dsc1a and -2a. As such, this is the first protein interaction ever observed with a Dsc-b isoform. Moreover, we determined that PKP3 interacts with plakoglobin, desmoplakin (DP) and the epithelial keratin 18. Evidence was found for the presence of at least two DP–PKP3 interaction sites. This finding might explain how lateral DP–PKP interactions are established in the upper layers of stratified epithelia, increasing the size of the desmosome and the number of anchoring points available for keratins. Together, these results show that PKP3, whose epithelial and epidermal desmosomal expression pattern and protein interaction repertoire are broader than those of PKP1 and -2, is a unique multiprotein binding element in the basic architecture of a vast majority of epithelial desmosomes.
doi:10.1083/jcb.200303036
PMCID: PMC2172904  PMID: 12707304
armadillo; cell adhesion; desmosomes; protein interaction; two-hybrid system
17.  A novel role for p120 catenin in E-cadherin function 
The Journal of Cell Biology  2002;159(3):465-476.
Îndirect evidence suggests that p120-catenin (p120) can both positively and negatively affect cadherin adhesiveness. Here we show that the p120 gene is mutated in SW48 cells, and that the cadherin adhesion system is impaired as a direct consequence of p120 insufficiency. Restoring normal levels of p120 caused a striking reversion from poorly differentiated to cobblestone-like epithelial morphology, indicating a crucial role for p120 in reactivation of E-cadherin function. The rescue efficiency was enhanced by increased levels of p120, and reduced by the presence of the phosphorylation domain, a region previously postulated to confer negative regulation. Surprisingly, the rescue was associated with substantially increased levels of E-cadherin. E-cadherin mRNA levels were unaffected by p120 expression, but E-cadherin half-life was more than doubled. Direct p120–E-cadherin interaction was crucial, as p120 deletion analysis revealed a perfect correlation between E-cadherin binding and rescue of epithelial morphology. Interestingly, the epithelial morphology could also be rescued by forced expression of either WT E-cadherin or a p120-uncoupled mutant. Thus, the effects of uncoupling p120 from E-cadherin can be at least partially overcome by artificially maintaining high levels of cadherin expression. These data reveal a cooperative interaction between p120 and E-cadherin and a novel role for p120 that is likely indispensable in normal cells.
doi:10.1083/jcb.200205115
PMCID: PMC2173073  PMID: 12427869
p120ctn; p120; cadherin; catenin; SW48
18.  The lipid phosphatase activity of PTEN is critical for stabilizing intercellular junctions and reverting invasiveness 
The Journal of Cell Biology  2001;155(7):1129-1136.
To analyze the implication of PTEN in the control of tumor cell invasiveness, the canine kidney epithelial cell lines MDCKras-f and MDCKts-src, expressing activated Ras and a temperature-sensitive v-Src tyrosine kinase, respectively, were transfected with PTEN expression vectors. Likewise, the human PTEN-defective glioblastoma cell lines U87MG and U373MG, the melanoma cell line FM-45, and the prostate carcinoma cell line PC-3 were transfected. We demonstrate that ectopic expression of wild-type PTEN in MDCKts-src cells, but not expression of PTEN mutants deficient in either the lipid or both the lipid and protein phosphatase activities, reverted the morphological transformation, induced cell–cell aggregation, and suppressed the invasive phenotype in an E-cadherin–dependent manner. In contrast, overexpression of wild-type PTEN did not counteract Ras-induced invasiveness of MDCKras-f cells expressing low levels of E-cadherin. PTEN effects were not associated with marked changes in accumulation or phosphorylation levels of E-cadherin and associated catenins. Wild-type, but not mutant, PTEN also reverted the invasive phenotype of U87MG, U373MG, PC-3, and FM-45 cells. Interestingly, PTEN effects were mimicked by N-cadherin–neutralizing antibody in the glioblastoma cell lines. Our data confirm the differential activities of E- and N-cadherin on invasiveness and suggest that the lipid phosphatase activity of PTEN exerts a critical role in stabilizing junctional complexes and restraining invasiveness.
doi:10.1083/jcb.200105109
PMCID: PMC2199329  PMID: 11756467
PTEN; invasiveness; E-cadherin; Src; PI3 kinase
19.  α-Catenin-Vinculin Interaction Functions to Organize the Apical Junctional Complex in Epithelial Cells  
The Journal of Cell Biology  1998;142(3):847-857.
αE-catenin, a cadherin-associated protein, is required for tight junction (TJ) organization, but its role is poorly understood. We transfected an αE-catenin–deficient colon carcinoma line with a series of αE-catenin mutant constructs. The results showed that the amino acid 326–509 domain of this catenin was required to organize TJs, and its COOH-terminal domain was not essential for this process. The 326–509 internal domain was found to bind vinculin. When an NH2-terminal αE-catenin fragment, which is by itself unable to organize the TJ, was fused with the vinculin tail, this chimeric molecule could induce TJ assembly in the αE-catenin–deficient cells. In vinculin-null F9 cells, their apical junctional organization was impaired, and this phenotype was rescued by reexpression of vinculin. These results indicate that the αE-catenin-vinculin interaction plays a role in the assembly of the apical junctional complex in epithelia.
PMCID: PMC2148175  PMID: 9700171
cadherin; catenin; tight junction; vinculin; zonula adherens
20.  Variant HNF1 Modulates Epithelial Plasticity of Normal and Transformed Ovary Cells1 
Neoplasia (New York, N.Y.)  2008;10(12):1481-1492.
Ovarian carcinoma arises from the ovarian surface epithelium, which undergoes phenotypic changes characteristic of müllerian epithelium during the first stages of tumorigenesis. The variant isoform of the hepatocyte nuclear factor 1 (vHNF1) is a transcription factor involved in the development of tissues derived from the müllerian duct. Here, we show that vHNF1 knockdown in two ovarian carcinoma cell lines, SKOV3 and IGROV1, leads to reduced E-cadherin (E-cadh) expression and decreased proliferation rate. Accordingly, SKOV3 cells ectopically expressing a dominant-negative (DN) vHNF1 mutant undergo an epithelial-mesenchymal-like transition, acquiring a spindle-like morphology, loss of E-cadh, and disrupted cell-cell contacts. Gene expression profiling of DNvHNF1 cells on the basis of a newly compiled list of epithelial-mesenchymal transition-related genes revealed a correlation between vHNF1 loss-of-function and acquisition of the mesenchymal phenotype. Indeed, phenotypic changes were associated with increased Slug transcription and functionality. Accordingly, vHNF1-transfected immortalized ovarian surface epithelial cells showed down-regulation of Snail and Slug transcripts. In DNvHNF1-transfected SKOV3 cells, growth rate decreased, and in vHNF1-transfected immortalized ovarian surface epithelial cells, growth rate increased. By immunohistochemistry, we found a strong association of vHNF1 with E-cadh in clear cell and in a subset of serous carcinomas, data that could potentially contribute in distinguishing different types of ovarian tumors. Our results may help in understanding the biology of ovarian carcinoma, identifying early detection markers, and opening potential avenues for therapeutic intervention.
PMCID: PMC2586698  PMID: 19048126

Results 1-20 (20)