Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Differential Anti-Glycan Antibody Responses in Schistosoma mansoni-Infected Children and Adults Studied by Shotgun Glycan Microarray 
Schistosomiasis (bilharzia) is a chronic and potentially deadly parasitic disease that affects millions of people in (sub)tropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown.
Methodology/Principal Findings
The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection.
Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further exploration of Schistosoma glycan antigens in relation to immunity.
Author Summary
Schistosomes are parasitic worms that cause chronic and potentially deadly disease in millions of people in (sub)tropical areas. An important partial immunity to infection does develop but this takes many years of exposure and multiple infections. Therefore, children are far more susceptible to re-infection after treatment than adults. This immunological protection is associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against carbohydrate chains (glycans) expressed by the parasite. The nature of the glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown. We have used a so-called shotgun glycan microarray approach to study differences in anti-glycan antibody responses between S. mansoni-infected children and adults. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups that may reflect differences in age or differences in length of exposure or infection in people living in an endemic area.
PMCID: PMC3510071  PMID: 23209862
2.  Transcriptome Kinetics of Circulating Neutrophils during Human Experimental Endotoxemia 
PLoS ONE  2012;7(6):e38255.
Polymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n = 4) administered a single dose of endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNFα, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNFα and IL-1α and IL-1β. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. These changes in neutrophil transcriptome suggest a combination of early activation of circulating neutrophils by TNFα and G-CSF and a mobilization of young neutrophils from the bone marrow.
PMCID: PMC3367952  PMID: 22679495
3.  Complement Receptor 3 and Toll-Like Receptor 4 Act Sequentially in Uptake and Intracellular Killing of Unopsonized Salmonella enterica Serovar Typhimurium by Human Neutrophils▿  
Infection and Immunity  2007;75(6):2655-2660.
The uptake and subsequent killing of Salmonella enterica serovar Typhimurium by human neutrophils was studied. In particular, two pattern recognition receptors, complement receptor 3 (CR3) and Toll-like receptor 4 (TLR4), were found to be essential for the efficient uptake and activation, respectively, of the NADPH oxidase. The uptake of Salmonella was almost completely inhibited by various monoclonal antibodies against CR3, and neutrophils from a patient with leukocyte adhesion deficiency type 1, which lack CR3, showed almost no uptake of Salmonella. A lipopolysaccharide (LPS) mutant strain of Salmonella was used to show that the expression of full-length, wild-type, or so-called smooth LPS is important for the efficient killing of intracellular Salmonella. Infection with wild-type-LPS-expressing Salmonella resulted in the generation of reactive oxygen species (ROS) in TLR4-decorated, Salmonella-containing vacuoles, whereas ROS were not induced by an LPS mutant strain. In addition, the recognition of Salmonella by neutrophils, leading to ROS production, was shown to be intracellular, as determined by priming experiments with intact bacteria under conditions where the bacterium is not taken up. Finally, the generation of ROS in the wild-type-Salmonella-infected neutrophils was largely inhibited by the action of a TLR4-blocking, cell-permeable peptide, showing that signaling by this receptor from the Salmonella-containing vacuole is essential for the activation of the NADPH oxidase. In sum, our data identify the sequential recognition of unopsonized Salmonella strains by CR3 and TLR4 as essential events in the efficient uptake and killing of this intracellular pathogen.
PMCID: PMC1932891  PMID: 17353285
4.  Gamma Irradiation or CD4+-T-Cell Depletion Causes Reactivation of Latent Salmonella enterica Serovar Typhimurium Infection in C3H/HeN Mice  
Infection and Immunity  2005;73(5):2857-2862.
Upon infection with Salmonella, a host develops an immune response to limit bacterial growth and kill and eliminate the pathogen. Salmonella has evolved mechanisms to remain dormant within the body, only to reappear (reactivate) at a later time when the immune system is abated. We have developed an in vivo model for studying reactivation of Salmonella enterica serovar Typhimurium infection in mice. Upon subcutaneous infection, C3H/HeN (Ityr) mice showed an increase in bacterial numbers in livers and spleens, which reached a peak on day 19. After full recovery from the infection, these mice were irradiated or depleted of CD4+ T cells. The mice displayed a secondary infection peak in livers and spleens with a course similar to that of the primary infection. We concluded that CD4+ T cells are involved in active suppression of S. enterica serovar Typhimurium during latency. The role of CD4+ T cells during primary infection with S. enterica serovar Typhimurium is well established. This is the first study to describe a role of CD4+ T cells during the latent phase of S. enterica serovar Typhimurium infection.
PMCID: PMC1087344  PMID: 15845491
5.  Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence  
Infection and Immunity  2004;72(2):996-1003.
Escherichia coli and Salmonella enterica serovar Typhimurium have evolved genetic systems, such as the soxR/S and marA regulons, to detoxify reactive oxygen species, like superoxide, which are formed as by-products of metabolism. Superoxide also serves as a microbicidal effector mechanism of the host's phagocytes. Here, we investigate whether regulatory genes other than soxR/S and marA are active in response to oxidative stress in Salmonella and may function as virulence determinants. We identified a bacterial gene, which was designated ramA (342 bp) and mapped at 13.1 min on the Salmonella chromosome, that, when overexpressed on a plasmid in E. coli or Salmonella, confers a pleiotropic phenotype characterized by increased resistance to the redox-cycling agent menadione and to multiple unrelated antibiotics. The ramA gene is present in Salmonella serovars but is absent in E. coli. The gene product displays 37 to 52% homology to the transcriptional activators soxR/S and marA and 80 to 100% identity to a multidrug resistance gene in Klebsiella pneumoniae and Salmonella enterica serovar Paratyphi A. Although a ramA soxR/S double null mutant is highly susceptible to intracellular superoxide generated by menadione and displays decreased Mn-superoxide dismutase activity, intracellular survival of this mutant within macrophage-like RAW 264.7 cells and in vivo replication in the spleens in Ityr mice are not affected. We concluded that despite its role in the protective response of the bacteria to oxidative stress in vitro, the newly identified ramA gene, together with soxR/S, does not play a role in initial replication of Salmonella in the organs of mice.
PMCID: PMC321585  PMID: 14742546
6.  A Superoxide-Hypersusceptible Salmonella enterica Serovar Typhimurium Mutant Is Attenuated but Regains Virulence in p47phox−/− Mice  
Infection and Immunity  2002;70(5):2614-2621.
Salmonella enterica serovar Typhimurium is a gram-negative, facultative intracellular pathogen that predominantly invades mononuclear phagocytes and is able to establish persistent infections. One of the innate defense mechanisms of phagocytic cells is the production of reactive oxygen species, including superoxide. S. enterica serovar Typhimurium has evolved mechanisms to resist such radicals, and these mechanisms could be decisive in its ability to survive and replicate within macrophages. Recently, we described a superoxide-hypersusceptible S. enterica serovar Typhimurium mutant strain, DLG294, that carries a transposon in sspJ, resulting in the lack of expression of SspJ, which is necessary for resistance against superoxide and replication within macrophages. Here we show that DLG294, which is a 14028s derivative, hardly induced any granulomatous lesions in the livers upon subcutaneous infection of C3H/HeN (Ityr) mice with 3 × 104 bacteria and that its bacterial counts were reduced by 3 log units compared to those of wild-type S. enterica serovar Typhimurium 14028s on day 5 after infection. In contrast, DLG294 replicated like wild-type S. enterica serovar Typhimurium 14028s and induced a phenotypically similar liver pathology in p47phox−/− mice, which are deficient in the p47phox subunit of the NADPH oxidase complex and which do not produce superoxide. Consistent with these results, DLG294 reached bacterial counts identical to those of wild-type S. enterica serovar Typhimurium 14028s in bone marrow-derived macrophages from p47phox−/− mice and in X-CGD PLB-985 cells at 24 h after challenge. These results indicate that SspJ plays a role in the bacterium's resistance to oxidative stress and in the survival and replication of S. enterica serovar Typhimurium both in vitro and in vivo.
PMCID: PMC127934  PMID: 11953403
7.  Novel Salmonella enterica Serovar Typhimurium Protein That Is Indispensable for Virulence and Intracellular Replication 
Infection and Immunity  2001;69(12):7413-7418.
Upon contact with host cells, the intracellular pathogen Salmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribed Salmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonella chromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107 bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.
PMCID: PMC98829  PMID: 11705915

Results 1-7 (7)