Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Inhibin Alpha-Subunit (INHA) Expression in Adrenocortical Cancer Is Linked to Genetic and Epigenetic INHA Promoter Variation 
PLoS ONE  2014;9(8):e104944.
Adrenocortical carcinoma (ACC) is a rare, but highly malignant tumor of unknown origin. Inhibin α-subunit (Inha) knockout mice develop ACCs following gonadectomy. In man, INHA expression varies widely within ACC tissues and its circulating peptide inhibin pro-αC has been described as a novel tumor marker for ACC. We investigated whether genetic and epigenetic changes of the INHA gene in human ACC cause loss or variation of INHA expression. To this end, analyses of INHA sequence, promoter methylation and mRNA expression were performed in human adrenocortical tissues. Serum inhibin pro-αC levels were also measured in ACC patients. INHA genetic analysis in 37 unique ACCs revealed 10 novel, heterozygous rare variants. Of the 3 coding bases affected, one variant was synonymous and two were missense variants: S72F and S184F. The minor allele of rs11893842 at −124 bp was observed at a low frequency (24%) in ACC samples and was associated with decreased INHA mRNA levels: 4.7±1.9 arbitrary units for AA, compared to 26±11 for AG/GG genotypes (P = 0.034). The methylation of four proximal INHA promoter CpGs was aberrantly increased in five ACCs (47.7±3.9%), compared to normal adrenals (18.4±0.6%, P = 0.0052), whereas the other 14 ACCs studied showed diminished promoter methylation (9.8±1.1%, P = 0.020). CpG methylation was inversely correlated to INHA mRNA levels in ACCs (r = −0.701, p = 0.0036), but not associated with serum inhibin pro-αC levels. In conclusion, aberrant methylation and common genetic variation in the INHA promoter occur in human ACCs and are associated with decreased INHA expression.
PMCID: PMC4128726  PMID: 25111790
2.  Regulation of steroidogenesis in a primary pigmented nodular adrenocortical disease-associated adenoma leading to virilization and subclinical Cushing’s syndrome 
Primary pigmented nodular adrenocortical disease (PPNAD) can lead to steroid hormone overproduction. Mutations in the cAMP protein kinase A regulatory subunit type 1A (PRKAR1A) are causative of PPNAD. Steroidogenesis in PPNAD can be modified through a local glucocorticoid feed-forward loop.
Investigation of regulation of steroidogenesis in a case of PPNAD with virilization.
Materials and methods
A 33-year-old woman presented with primary infertility due to hyperandrogenism. Elevated levels of testosterone and subclinical ACTH-independent Cushing’s syndrome led to the discovery of an adrenal tumor, which was diagnosed as PPNAD. In vivo evaluation of aberrantly expressed hormone receptors showed no steroid response to known stimuli. Genetic analysis revealed a PRKAR1A protein-truncating Q28X mutation. After adrenalectomy, steroid levels normalized. Tumor cells were cultured and steroidogenic responses to ACTH and dexamethasone were measured and compared with those in normal adrenal and adrenocortical carcinoma cells. Expression levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) types 3 and 5 and steroid receptors were quantified in PPNAD, normal adrenal, and adrenal adenoma tissues.
Isolated PPNAD cells, analogous to normal adrenal cells, showed both increased steroidogenic enzyme expression and steroid secretion in response to ACTH. Dexamethasone did not affect steroid production in the investigated types of adrenal cells. 17β-HSD type 5 was expressed at a higher level in the PPNAD-associated adenoma compared with control adrenal tissue.
PPNAD-associated adenomas can cause virilization and infertility by adrenal androgen overproduction. This may be due to steroidogenic control mechanisms that differ from those described for PPNAD without large adenomas.
PMCID: PMC4100689  PMID: 23065993
3.  ACTH-independent macronodular adrenocortical hyperplasia reveals prevalent aberrant in vivo and in vitro responses to hormonal stimuli and coupling of arginine-vasopressin type 1a receptor to 11β-hydroxylase 
Adrenal Cushing’s syndrome caused by ACTH-independent macronodular adrenocortical hyperplasia (AIMAH) can be accompanied by aberrant responses to hormonal stimuli. We investigated the prevalence of adrenocortical reactions to these stimuli in a large cohort of AIMAH patients, both in vivo and in vitro.
In vivo cortisol responses to hormonal stimuli were studied in 35 patients with ACTH-independent bilateral adrenal enlargement and (sub-)clinical hypercortisolism. In vitro, the effects of these stimuli on cortisol secretion and steroidogenic enzyme mRNA expression were evaluated in cultured AIMAH and other adrenocortical cells. Arginine-vasopressin (AVP) receptor mRNA levels were determined in the adrenal tissues.
Positive serum cortisol responses to stimuli were detected in 27/35 AIMAH patients tested, with multiple responses within individual patients occurring for up to four stimuli. AVP and metoclopramide were the most prevalent hormonal stimuli triggering positive responses in vivo. Catecholamines induced short-term cortisol production more often in AIMAH cultures compared to other adrenal cells. Short- and long-term incubation with AVP increased cortisol secretion in cultures of AIMAH cells. AVP also increased steroidogenic enzyme mRNA expression, among which an aberrant induction of CYP11B1. AVP type 1a receptor was the only AVPR expressed and levels were high in the AIMAH tissues. AVPR1A expression was related to the AVP-induced stimulation of CYP11B1.
Multiple hormonal signals can simultaneously induce hypercortisolism in AIMAH. AVP is the most prevalent eutopic signal and expression of its type 1a receptor was aberrantly linked to CYP11B1 expression.
PMCID: PMC3847204  PMID: 24034279
AIMAH; Cushing’s syndrome; Arginine-vasopressin
4.  In vitro glucocorticoid sensitivity is associated with clinical glucocorticoid therapy outcome in rheumatoid arthritis 
Arthritis Research & Therapy  2012;14(4):R195.
Genetic and disease-related factors give rise to a wide spectrum of glucocorticoid (GC) sensitivity in rheumatoid arthritis (RA). In clinical practice, GC treatment is not adapted to these differences in GC sensitivity. In vitro assessment of GC sensitivity before the start of therapy could allow more individualized GC therapy. The aim of the study was to investigate the association between in vitro and in vivo GC sensitivity in RA.
Thirty-eight early and 37 established RA patients were prospectively studied. In vitro GC sensitivity was assessed with dexamethasone-induced effects on interleukin-2 (IL-2) and glucocorticoid-induced leucine zipper (GILZ) messenger RNA expression in peripheral blood mononuclear cells (PBMCs). A whole-cell dexamethasone-binding assay was used to measure number and affinity (1/KD) of glucocorticoid receptors (GRs).
In vivo GC sensitivity was determined by measuring the disease activity score (DAS) and health assessment questionnaire disability index (HAQ-DI) score before and after 2 weeks of standardized GC treatment.
GR number was positively correlated with improvement in DAS. IL-2-EC50 and GILZ-EC50 values both had weak near-significant correlations with clinical improvement in DAS in intramuscularly treated patients only. HAQ responders had lower GILZ-EC50 values and higher GR number and KD.
Baseline cellular in vitro glucocorticoid sensitivity is modestly associated with in vivo improvement in DAS and HAQ-DI score after GC bridging therapy in RA. Further studies are needed to evaluate whether in vitro GC sensitivity may support the development of tailor-made GC therapy in RA.
PMCID: PMC3580593  PMID: 22920577
5.  A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation 
Coviello, Andrea D. | Haring, Robin | Wellons, Melissa | Vaidya, Dhananjay | Lehtimäki, Terho | Keildson, Sarah | Lunetta, Kathryn L. | He, Chunyan | Fornage, Myriam | Lagou, Vasiliki | Mangino, Massimo | Onland-Moret, N. Charlotte | Chen, Brian | Eriksson, Joel | Garcia, Melissa | Liu, Yong Mei | Koster, Annemarie | Lohman, Kurt | Lyytikäinen, Leo-Pekka | Petersen, Ann-Kristin | Prescott, Jennifer | Stolk, Lisette | Vandenput, Liesbeth | Wood, Andrew R. | Zhuang, Wei Vivian | Ruokonen, Aimo | Hartikainen, Anna-Liisa | Pouta, Anneli | Bandinelli, Stefania | Biffar, Reiner | Brabant, Georg | Cox, David G. | Chen, Yuhui | Cummings, Steven | Ferrucci, Luigi | Gunter, Marc J. | Hankinson, Susan E. | Martikainen, Hannu | Hofman, Albert | Homuth, Georg | Illig, Thomas | Jansson, John-Olov | Johnson, Andrew D. | Karasik, David | Karlsson, Magnus | Kettunen, Johannes | Kiel, Douglas P. | Kraft, Peter | Liu, Jingmin | Ljunggren, Östen | Lorentzon, Mattias | Maggio, Marcello | Markus, Marcello R. P. | Mellström, Dan | Miljkovic, Iva | Mirel, Daniel | Nelson, Sarah | Morin Papunen, Laure | Peeters, Petra H. M. | Prokopenko, Inga | Raffel, Leslie | Reincke, Martin | Reiner, Alex P. | Rexrode, Kathryn | Rivadeneira, Fernando | Schwartz, Stephen M. | Siscovick, David | Soranzo, Nicole | Stöckl, Doris | Tworoger, Shelley | Uitterlinden, André G. | van Gils, Carla H. | Vasan, Ramachandran S. | Wichmann, H.-Erich | Zhai, Guangju | Bhasin, Shalender | Bidlingmaier, Martin | Chanock, Stephen J. | De Vivo, Immaculata | Harris, Tamara B. | Hunter, David J. | Kähönen, Mika | Liu, Simin | Ouyang, Pamela | Spector, Tim D. | van der Schouw, Yvonne T. | Viikari, Jorma | Wallaschofski, Henri | McCarthy, Mark I. | Frayling, Timothy M. | Murray, Anna | Franks, Steve | Järvelin, Marjo-Riitta | de Jong, Frank H. | Raitakari, Olli | Teumer, Alexander | Ohlsson, Claes | Murabito, Joanne M. | Perry, John R. B.
PLoS Genetics  2012;8(7):e1002805.
Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
Author Summary
Sex hormone-binding globulin (SHBG) is the key protein responsible for binding and transporting the sex steroid hormones, testosterone and estradiol, in the circulatory system. SHBG regulates their bioavailability and therefore their effects in the body. SHBG has been linked to chronic diseases including type 2 diabetes and to hormone-sensitive cancers such as breast and prostate cancer. SHBG concentrations are approximately 50% heritable in family studies, suggesting SHBG concentrations are under significant genetic control; yet, little is known about the specific genes that influence SHBG. We conducted a large study of the association of SHBG concentrations with markers in the human genome in ∼22,000 white men and women to determine which loci influence SHBG concentrations. Genes near the identified genomic markers in addition to the SHBG protein coding gene included PRMT6, GCKR, ZBTB10, JMJD1C, SLCO1B1, NR2F2, ZNF652, TDGF3, LHCGR, BAIAP2L1, and UGT2B15. These genes represent a wide range of biologic pathways that may relate to SHBG function and sex steroid hormone biology, including liver function, lipid metabolism, carbohydrate metabolism and type 2 diabetes, and the development and progression of sex steroid hormone-responsive cancers.
PMCID: PMC3400553  PMID: 22829776
6.  Application of the New Classification on Patients with a Disorder of Sex Development in Indonesia 
Disorder of sex development (DSD) patients in Indonesia most often do not receive a proper diagnostic evaluation and treatment. This study intended to categorize 88 Indonesian patients in accordance with the new consensus DSD algorithm. Diagnostic evaluation including clinical, hormonal, genetic, imaging, surgical, and histological parameters was performed. Fifty-three patients were raised as males, and 34 as females. Of 22 patients with 46, XX DSD, 15 had congenital adrenal hyperplasia, while in one patient, an ovarian Leydig cell tumor was found. In all 58 46, XY DSD patients, 29 were suspected of a disorder of androgen action (12 with an androgen receptor mutation), and in 9, gonadal dysgenesis was found and, in 20, severe hypospadias e.c.i. Implementation of the current consensus statement in a resource-poor environment is very difficult. The aim of the diagnostic workup in developing countries should be to end up with an evidence-based diagnosis. This is essential to improve treatment and thereby to improve the patients' quality of life.
PMCID: PMC3255103  PMID: 22253624
7.  Genetic Determinants of Serum Testosterone Concentrations in Men 
PLoS Genetics  2011;7(10):e1002313.
Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.
Author Summary
Testosterone is the most important testicular androgen in men. Low serum testosterone concentrations are associated with cardiovascular morbidity, metabolic syndrome, type 2 diabetes mellitus, atherosclerosis, osteoporosis, sarcopenia, and increased mortality risk. Thus, there is growing evidence that serum testosterone is a valuable biomarker of men's overall health status. Studies in male twins indicate that there is a strong heritability of serum testosterone. Here we perform a large-scale genome-wide association study to examine the effects of common genetic variants on serum testosterone concentrations. By examining 14,429 men, we show that genetic variants in the sex hormone-binding globulin (SHBG) locus and on the X chromosome are associated with a substantial variation in serum testosterone concentrations and increased risk of low testosterone. The reported associations may now be used in order to better understand the functional background of recently identified disease associations related to low testosterone. Importantly, we identified the first known genetic variant, which affects SHBG's affinity for binding testosterone and the free testosterone fraction and could therefore influence the calculation of free testosterone. This finding suggests that individual-based SHBG-testosterone affinity constants are required depending on the genotype of this single-nucleotide polymorphism.
PMCID: PMC3188559  PMID: 21998597
8.  Aromatase inhibitors in men: effects and therapeutic options 
Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended.
PMCID: PMC3143915  PMID: 21693046
9.  Eight Common Genetic Variants Associated with Serum DHEAS Levels Suggest a Key Role in Ageing Mechanisms 
PLoS Genetics  2011;7(4):e1002025.
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands—yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10−36), SULT2A1 (rs2637125; p = 2.61×10−19), ARPC1A (rs740160; p = 1.56×10−16), TRIM4 (rs17277546; p = 4.50×10−11), BMF (rs7181230; p = 5.44×10−11), HHEX (rs2497306; p = 4.64×10−9), BCL2L11 (rs6738028; p = 1.72×10−8), and CYP2C9 (rs2185570; p = 2.29×10−8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS.
Author Summary
Dehydroepiandrosterone sulphate (DHEAS), mainly secreted by the adrenal gland, is the most abundant circulating steroid in humans. It shows a significant physiological decline after the age of 25 and diminishes about 95% by the age of 85 years, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. Twin- and family-based studies have shown that there is a substantial genetic effect with heritability estimate of 60%, but no specific genes regulating serum DHEAS concentration have been identified to date. Here we take advantage of recent technical and methodological advances to examine the effects of common genetic variants on serum DHEAS concentrations. By examining 14,846 Caucasian individuals, we show that eight common genetic variants are associated with serum DHEAS concentrations. Genes at or near these genetic variants include BCL2L11, ARPC1A, ZKSCAN5, TRIM4, HHEX, CYP2C9, BMF, and SULT2A1. These genes have various associations with steroid hormone metabolism—co-morbidities of ageing including type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins—suggesting a wider functional role for DHEAS than previously thought.
PMCID: PMC3077384  PMID: 21533175
10.  The association of serum testosterone levels and ventricular repolarization 
It is assumed that testosterone is an important regulator of gender-related differences in ventricular repolarization. Therefore, our aim was to study whether serum levels of testosterone are associated with QTc, QT and RR interval variation. Setting: two independent population-based cohort studies. Participants: 445 male participants (≥55 years) from the Rotterdam study cohort and 1,428 male participants from the study of health in Pomerania (SHIP) with an electrocardiogram who were randomly sampled for assessment of serum testosterone at baseline, after exclusion of participants with testosterone altering drugs, QTc prolonging drugs or dig(it)oxin, left ventricular hypertrophy and left and right bundle branch block. Endpoints: length of the QTc, QT and RR intervals. Analysis: linear regression model, adjusted for the two individual studies and a pooled analysis of both studies. The pooled analysis of the Rotterdam study and SHIP showed that the QTc interval gradually decreased among the tertiles (P value for trend 0.024). The third tertile of serum testosterone was associated with a lower QTc interval compared to the first tertile [−3.4 ms (−6.5; −0.3)]. However, the third tertile of serum testosterone was not associated with a lower QT interval compared to the first tertile [−0.7 ms (−3.1; 1.8)]. The RR interval gradually increased among the tertiles (P value for trend 0.002) and the third tertile of serum testosterone showed an increased RR interval compared to the first tertile [33.5 ms (12.2; 54.8)]. In the pooled analysis of two population-based studies, serum testosterone levels were not associated with the QT interval, which could be due to a lack of power. Lower QTc intervals in men with higher serum testosterone levels could be due to the association of serum testosterone with prolongation of the RR interval.
PMCID: PMC2807939  PMID: 19957021
Serum testosterone; Ventricular repolarization; QTc interval; RR interval
11.  Effects of therapy with [177Lu-DOTA0,Tyr3]octreotate on endocrine function 
Peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues is a novel therapy for patients with somatostatin receptor-positive tumours. We determined the effects of PRRT with [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) on glucose homeostasis and the pituitary-gonadal, pituitary-thyroid and pituitary-adrenal axes.
Hormone levels were measured and adrenal function assessed at baseline and up to 24 months of follow-up.
In 35 men, mean serum inhibin B levels were decreased at 3 months post-therapy (205 ± 16 to 25 ± 4 ng/l, p < 0.05) and follicle-stimulating hormone (FSH) levels increased (5.9 ± 0.5 to 22.7 ± 1.4 IU/l, p < 0.05). These levels returned to near baseline levels. Total testosterone and sex hormone binding globulin (SHBG) levels decreased (15.0 ± 0.9 to 10.6 ± 1.0 nmol/l, p < 0.05 and 61.8 ± 8.7 to 33.2 ± 3.7 nmol, p < 0.05), respectively, whereas non-SHBG-bound T did not change. An increase (5.2 ± 0.6 to 7.7 ± 0.7 IU/l, p < 0.05) of luteinizing hormone (LH) levels was found at 3 months of follow-up returning to baseline levels thereafter. In 21 postmenopausal women, a decrease in levels of FSH (74.4 ± 5.6 to 62.4 ± 7.7 IU/l, p < 0.05) and LH (26.8 ± 2.1 to 21.1 ± 3.0 IU/l, p < 0.05) was found. Of 66 patients, 2 developed persistent primary hypothyroidism. Free thyroxine (FT4) levels decreased (17.7 ± 0.4 to 15.6 ± 0.6 pmol/l, p < 0.05), whereas thyroid-stimulating hormone (TSH) and triiodothyronine (T3) levels did not change. Reverse triiodothyronine (rT3) levels decreased (0.38 ± 0.03 to 0.30 ± 0.01 nmol/l, p < 0.05). Before and after therapy adrenocorticotropic hormone (ACTH) stimulation tests showed an adequate response of serum cortisol (> 550 nmol/l, n = 18). Five patients developed elevated HbA1c levels (> 6.5%).
In men 177Lu-octreotate therapy induced transient inhibitory effects on spermatogenesis, but non-SHBG-bound T levels remained unaffected. In the long term, gonadotropin levels decreased significantly in postmenopausal women. Only a few patients developed hypothyroidism or elevated levels of HbA1c. Therefore, PRRT with 177Lu-octreotate can be regarded as a safe treatment modality with respect to short- and long-term endocrine function.
PMCID: PMC2764054  PMID: 19471926
Tumour targeting; Peptide; Somatostatin; Therapy; Radiolabelled peptides; Antibodies; Radiopharmacy; Endocrinology; Oncology
12.  Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis 
Intensive Care Medicine  2009;35(7):1247-1254.
Corticosteroids are used in sepsis treatment to benefit outcome. However, discussion remains on which patients will benefit from treatment. Inter-individual variations in cortisol sensitivity, mediated through the glucocorticoid receptor, might play a role in the observed differences. Our aim was to study changes in mRNA levels of three glucocorticoid receptor splice variants in neutrophils of children with sepsis.
Patients and design
Twenty-three children admitted to the pediatric intensive care unit with sepsis or septic shock were included. Neutrophils were isolated at days 0, 3 and 7, and after recovery (>3 months). mRNA levels of the glucocorticoid receptor splice variants GR-α (determining most of the cortisol effect), GR-P (increasing GR-α effect) and GR-β (inhibitor of GR-α) were measured quantitatively.
Main results
Neutrophils from sepsis patients showed decreased levels of glucocorticoid receptor mRNA of the GR-α and GR-P splice variants on day 0 compared to after recovery. GR-α and GR-P mRNA levels showed a gradual recovery on days 3 and 7 and normalized after recovery. GR-β mRNA levels did not change significantly during sepsis. GR expression was negatively correlated to interleukin-6 (a measure of disease severity, r = −0.60, P = 0.009).
Children with sepsis or septic shock showed a transient depression of glucocorticoid receptor mRNA in their neutrophils. This feature may represent a tissue-specific adaptation during sepsis leading to increased cortisol resistance of neutrophils. Our study adds to understanding the mechanism of cortisol sensitivity in immune cells. Future treatment strategies, aiming at timing and tissue specific regulation of glucocorticoids, might benefit patients with sepsis or septic shock.
PMCID: PMC2698978  PMID: 19373457
Children; Corticosteroids; Cortisol sensitivity; Sepsis; Septic shock
13.  One single dose of etomidate negatively influences adrenocortical performance for at least 24 h in children with meningococcal sepsis 
Intensive Care Medicine  2007;34(1):163-168.
To investigate the effect of one single bolus of etomidate used for intubation on adrenal function in children with meningococcal sepsis.
Retrospective study conducted between 1997 and 2004.
University-affiliated paediatric intensive care unit (PICU).
Patients and participants
Sixty children admitted to the PICU with meningococcal sepsis, not treated with steroids.
Adrenal hormone concentrations were determined as soon as possible after PICU admission, and after 12 h and 24 h. To assess disease severity, PRISM score and selected laboratory parameters were determined.
Measurements and main results
On admission, before blood was drawn, 23 children had been intubated with etomidate, 8 without etomidate and 29 were not intubated. Children who were intubated had significantly higher disease severity parameters than those not intubated, whereas none of these parameters significantly differed between children intubated with or without etomidate. Children who received etomidate had significantly lower cortisol, higher ACTH and higher 11-deoxycortisol levels than those who did not receive etomidate. Arterial glucose levels were significantly lower in children who were intubated with etomidate than in non-intubated children. When children were intubated with etomidate, cortisol levels were 3.2 times lower for comparable 11-deoxycortisol levels. Eight children died, seven of whom had received etomidate. Within 24 h cortisol/ACTH and cortisol/11-deoxycortisol ratios increased significantly in children who received etomidate, but not in children who did not, resulting in comparable cortisol/ACTH ratios with still significantly lowered cortisol/11-deoxycortisol ratios 24 h after admission.
Our data imply that even one single bolus of etomidate negatively influences adrenal function for at least 24 h. It might therefore increase risk of death.
PMCID: PMC2668631  PMID: 17710382
Adrenal insufficiency; Etomidate; Critical illness; Meningococcal disease; Child

Results 1-13 (13)