Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Effectiveness of 7-Valent Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease in HIV-Infected and -Uninfected Children in South Africa: A Matched Case-Control Study 
Cohen, Cheryl | von Mollendorf, Claire | de Gouveia, Linda | Naidoo, Nireshni | Meiring, Susan | Quan, Vanessa | Nokeri, Vusi | Fortuin-de Smit, Melony | Malope-Kgokong, Babatyi | Moore, David | Reubenson, Gary | Moshe, Mamokgethi | Madhi, Shabir A. | Eley, Brian | Hallbauer, Ute | Kularatne, Ranmini | Conklin, Laura | O'Brien, Katherine L. | Zell, Elizabeth R. | Klugman, Keith | Whitney, Cynthia G. | von Gottberg, Anne | Moore, David | Verwey, Charl | Varughese, Sheeba | Archary, Moherndran | Naby, Fathima | Dawood, Khathija | Naidoo, Ramola | Elliott, Gene | Hallbauer, Ute | Eley, Brian | Nuttall, James | Cooke, Louise | Finlayson, Heather | Rabie, Helena | Whitelaw, Andrew | Perez, Dania | Jooste, Pieter | Naidoo, Dhamiran | Kularatne, Ranmini | Reubenson, Gary | Cohen, Cheryl | de Gouveia, Linda | du Plessis, Mignon | Govender, Nevashan | Meiring, Susan | Quan, Vanessa | von Mollendorf, Claire | Fortuin-de Smidt, Melony | Naidoo, Nireshni | Malope-Kgokong, Babatyi | Nokeri, Vusi | Ncha, Relebohile | Lindani, Sonwabo | von Gottberg, Anne | Spies, Barry | Sono, Lino | Maredi, Phasweni | Hamese, Ken | Moshe, Mamokgethi | Nchabeleng, Maphosane | Ngcobo, Ntombenhle | van den Heever, Johann | Madhi, Shabir | Conklin, Laura | Verani, Jennifer | Whitney, Cynthia | Zell, Elizabeth | Loo, Jennifer | Nelson, George | Klugman, Keith | O'Brien, Katherine
A 2 + 1 seven-valent pneumococcal conjugate vaccine schedule is effective against vaccine-serotype invasive pneumococcal disease (IPD) in HIV-uninfected children and HIV-exposed but -uninfected children and against all-serotype multidrug-resistant IPD in HIV-uninfected children.
Background. South Africa introduced 7-valent pneumococcal conjugate vaccine (PCV7) in April 2009 using a 2 + 1 schedule (6 and 14 weeks and 9 months). We estimated the effectiveness of ≥2 PCV7 doses against invasive pneumococcal disease (IPD) in human immunodeficiency virus (HIV)–infected and -uninfected children.
Methods. IPD (pneumococcus identified from a normally sterile site) cases were identified through national laboratory-based surveillance. Specimens were serotyped by Quellung or polymerase chain reaction. Four controls, matched for age, HIV status, and hospital were sought for each case. Using conditional logistic regression, we calculated vaccine effectiveness (VE) as 1 minus the adjusted odds ratio for vaccination.
Results. From March 2010 through November 2012, we enrolled 187 HIV-uninfected (48 [26%] vaccine serotype) and 109 HIV-infected (43 [39%] vaccine serotype) cases and 752 HIV-uninfected and 347 HIV-infected controls aged ≥16 weeks. Effectiveness of ≥2 PCV7 doses against vaccine-serotype IPD was 74% (95% confidence interval [CI], 25%–91%) among HIV-uninfected and −12% (95% CI, −449% to 77%) among HIV-infected children. Effectiveness of ≥3 doses against vaccine-serotype IPD was 90% (95% CI, 14%–99%) among HIV-uninfected and 57% (95% CI, −371% to 96%) among HIV-infected children. Among HIV-exposed but -uninfected children, effectiveness of ≥2 doses was 92% (95% CI, 47%–99%) against vaccine-serotype IPD. Effectiveness of ≥2 doses against all-serotype multidrug-resistant IPD was 96% (95% CI, 62%–100%) among HIV-uninfected children.
Conclusions. A 2 + 1 PCV7 schedule was effective in preventing vaccine-serotype IPD in HIV-uninfected and HIV-exposed, uninfected children. This finding supports the World Health Organization recommendation for this schedule as an alternative to a 3-dose primary series among HIV-uninfected individuals.
PMCID: PMC4144265  PMID: 24917657
children; HIV; pneumococcus; pneumococcal conjugate vaccine; South Africa
2.  Challenges of Using Molecular Serotyping for Surveillance of Pneumococcal Disease 
Journal of Clinical Microbiology  2014;52(9):3271-3276.
Recent advances in the molecular identification and serotyping of Streptococcus pneumoniae are useful for culture-negative samples; however, there are limitations associated with these methods. We aimed to assess the value of molecular assays for invasive pneumococcal disease (IPD) surveillance in South Africa from 2010 through 2012. Nonviable isolates and culture-negative clinical specimens were tested for the lytA gene and, if positive, were serotyped, using real-time PCRs. Multinomial regression analysis was used to determine the maximum lytA cycle threshold (CT) value useful for predicting the ability to detect a serotype for the sample. The χ2 test was used to compare the prevalence of serotypes between viable/nonviable isolates and culture-negative clinical specimens. Of 11,224 IPD cases reported, 1,091 (10%) were culture-negative samples and 981 (90%) of these were lytA positive. Samples with a lytA CT value of ≥35 were significantly less likely to be serotyped. A serotype/group was determined for 87% (737/844) of samples with a lytA CT value of <35, of which 60% (443/737) were identified as individual serotypes. The serotype prevalence did not differ significantly between isolates and culture-negative specimens. Although molecular serotyping added 7% (737/11,224) serotyping data, the inability to resolve 40% of samples to single serotypes remains a challenge for serotype-specific data analysis.
PMCID: PMC4313149  PMID: 24958802
3.  Factors Associated with Ceftriaxone Nonsusceptibility of Streptococcus pneumoniae: Analysis of South African National Surveillance Data, 2003 to 2010 
It is important to monitor β-lactam antimicrobial nonsusceptibility trends for Streptococcus pneumoniae to inform empirical treatment guidelines. In this study, we describe penicillin and ceftriaxone susceptibility trends using national laboratory-based pneumococcal surveillance data from 2003 to 2010. A sentinel enhanced-site patient subset (2009 to 2010) contributed to the risk factor and mortality analyses. We included 9,218 invasive pneumococcal disease (IPD) cases for trend analyses and 2,854 IPD cases for risk factor and mortality analyses. Overall, we detected no significant changes in penicillin (patients <5 years of age, P = 0.50; patients ≥5 years of age, P = 0.05) or ceftriaxone nonsusceptibility rates (patients <5 years of age, P = 0.21; patients ≥5 years of age, P = 0.60). Factors associated with ceftriaxone nonsusceptibility on multivariate analysis were an age of <5 years (<1 year of age: adjusted odds ratio [aOR], 2.87; 95% confidence interval [CI], 1.70 to 4.86; 1 to 4 years of age: aOR, 2.58; 95% CI, 1.53 to 4.35, versus 25 to 44 years of age), province (Gauteng [aOR, 2.46; 95% CI, 1.26 to 4.84], and Northern Cape [aOR, 4.52; 95% CI, 1.95 to 10.52] versus KwaZulu-Natal), β-lactam use within 24 h preceding admission (aOR, 2.52; 95% CI, 1.41 to 4.53), and 13-valent vaccine serotypes (aOR, 51.64; 95% CI, 7.18 to 371.71). Among patients ≥5 years of age with meningitis who were treated according to current guidelines, HIV-infected patients (aOR, 2.94; 95% CI, 1.32 to 6.54) and patients infected with ceftriaxone-nonsusceptible isolates (aOR, 3.17; 95% CI, 1.27 to 7.89) had increased mortality rates. Among children <5 years of age with meningitis, mortality was increased in HIV-infected patients (aOR, 3.04; 95% CI, 1.40 to 6.56) but not in those with ceftriaxone-nonsusceptible isolates. Penicillin and ceftriaxone nonsusceptibility remained stable over the study period. Ceftriaxone nonsusceptibility was associated with increased mortality among patients ≥5 years of age with meningitis. The introduction of a pneumococcal conjugate vaccine may reduce ceftriaxone-nonsusceptible meningitis.
PMCID: PMC4068496  PMID: 24687499
4.  Population Snapshot of Streptococcus pneumoniae Causing Invasive Disease in South Africa Prior to Introduction of Pneumococcal Conjugate Vaccines 
PLoS ONE  2014;9(9):e107666.
We determined the sequence types of isolates that caused invasive pneumococcal disease (IPD) prior to routine use of pneumococcal conjugate vaccines (PCV) in South Africa. PCV-13 serotypes and 6C isolates collected in 2007 (1 461/2 437, 60%) from patients of all ages as part of on-going, national, laboratory-based surveillance for IPD, were selected for genetic characterization. In addition, all 134 non-PCV isolates from children <2 years were selected for characterization. Sequence type diversity by serotype and age category (children <5 years vs. individuals ≥5 years) was assessed for PCV serotypes using Simpson’s index of diversity. Similar genotypes circulated among isolates from children and adults and the majority of serotypes were heterogeneous. While globally disseminated clones were common among some serotypes (e.g., serotype 1 [clonal complex (CC) 217, 98% of all serotype 1] and 14 [CC230, 43%)]), some were represented mainly by clonal complexes rarely reported elsewhere (e.g., serotype 3 [CC458, 60%] and 19A [CC2062, 83%]). In children <2 years, serotype 15B and 8 were the most common serotypes among non-PCV isolates (16% [22/134] and 15% [20/134] isolates, respectively). Sequence type 7052 and 53 were most common among serotypes 15B and 8 isolates and accounted for 58% (7/12) and 64% (9/14) of the isolates, respectively. Serotype 19F, 14, 19A and 15B had the highest proportions of penicillin non-susceptible isolates. Genotypes rarely reported in other parts of the world but common among some of our serotypes highlight the importance of our data as these genotypes may emerge post PCV introduction.
PMCID: PMC4169438  PMID: 25233455
5.  Clonal Analysis of Neisseria meningitidis Serogroup B Strains in South Africa, 2002 to 2006: Emergence of New Clone ST-4240/6688 
Journal of Clinical Microbiology  2012;50(11):3678-3686.
From August 1999 through July 2002, hyperinvasive Neisseria meningitidis serogroup B (MenB) clonal complexes (CCs), namely, ST-32/ET-5 (CC32) and ST-41/44/lineage 3 (CC41/44), were predominant in the Western Cape Province of South Africa. This study analyzed MenB invasive isolates from a national laboratory-based surveillance system that were collected from January 2002 through December 2006. Isolates were characterized by pulsed-field gel electrophoresis (PFGE) (n = 302), and multilocus sequence typing (MLST) and PorA and FetA typing were performed on randomly selected isolates (34/302, 11%). In total, 2,400 cases were reported, with the highest numbers from Gauteng Province (1,307/2,400, 54%) and Western Cape Province (393/2,400, 16%); 67% (1,617/2,400) had viable isolates and 19% (307/1,617) were identified as serogroup B. MenB incidence remained stable over time (P = 0.77) (average incidence, 0.13/100,000 population [range, 0.10 to 0.16/100,000 population]). PFGE (302/307, 98%) divided isolates (206/302, 68%) into 13 clusters and 96 outliers. The largest cluster, B1, accounted for 25% of isolates (76/302) over the study period; its prevalence decreased from 43% (20/47) in 2002 to 13% (8/62) in 2006 (P < 0.001), and it was common in the Western Cape (58/76, 76%). Clusters B2 and B3 accounted for 10% (31/302) and 6% (19/302), respectively, and showed no significant change over time and were predominant in Gauteng. Randomly selected isolates from clusters B1, B2, and B3 belonged to CC32, CC41/44, and the new CC4240/6688, respectively. Overall, 15 PorA and 12 FetA types were identified. MenB isolates were mostly diverse with no single dominant clone; however, CC32 and CC41/44 accounted for 35% and the new CC4240/6688 was the third most prevalent clone.
PMCID: PMC3486271  PMID: 22972827
6.  Risk Factors for Multidrug-Resistant Invasive Pneumococcal Disease in South Africa, a Setting with High HIV Prevalence, in the Prevaccine Era from 2003 to 2008 
Antimicrobial Agents and Chemotherapy  2012;56(10):5088-5095.
The emergence of multidrug-resistant (MDR) Streptococcus pneumoniae complicates disease management. We aimed to determine risk factors associated with MDR invasive pneumococcal disease (IPD) in South Africa and evaluate the potential for vaccination to reduce disease burden. IPD data collected by laboratory-based surveillance from 2003 through 2008 were analyzed. Multidrug resistance was defined as nonsusceptibility to any three or more different antibiotic classes. Risk factors for multidrug resistance were evaluated using multivariable logistic regression. Of 20,100 cases of IPD identified, 3,708 (18%) had MDR isolates, with the proportion increasing from 16% (461/2,891) to 20% (648/3,326) (P < 0.001) over the study period. Serotypes included in the 13-valent pneumococcal conjugate vaccine (PCV13) accounted for 94% of MDR strains. Significant risk factors for MDR IPD included PCV13 (1,486/6,407; odds ratio [OR] of 6.3; 95% confidence interval [CI] of 5.0 to 7.9) and pediatric (3,382/9,980; OR of 12.8; 95% CI of 10.6 to 15.4) serotypes, age of <5 (802/3,110; OR of 2.0; 95% CI of 1.8 to 2.3) or ≥65 (39/239; OR of 1.5; 95% CI of 1.0 to 2.2) years versus age of 15 to 64 years, HIV infection (975/4,636; OR of 1.5; 95% CI of 1.2 to 1.8), previous antibiotic use (242/803; OR of 1.7; 95% CI of 1.4 to 2.1), previous hospital admissions (579/2,450; OR of 1.2; 95% CI of 1.03 to 1.4), urban location (883/4,375; OR of 2.0; 95% CI of 1.1 to 3.5), and tuberculosis treatment (246/1,021; OR of 1.2; 95% CI of 1.03 to 1.5). MDR IPD prevalence increased over the study period. The effect of many of the MDR risk factors could be reduced by more judicious use of antibiotics. Because PCV13 serotypes account for most MDR infections, pneumococcal vaccination may reduce the prevalence of multidrug resistance.
PMCID: PMC3457358  PMID: 22802256
7.  Persistent High Burden of Invasive Pneumococcal Disease in South African HIV-Infected Adults in the Era of an Antiretroviral Treatment Program 
PLoS ONE  2011;6(11):e27929.
Highly active antiretroviral treatment (HAART) programs have been associated with declines in the burden of invasive pneumococcal disease (IPD) in industrialized countries. The aim of this study was to evaluate trends in IPD hospitalizations in HIV-infected adults in Soweto, South Africa, associated with up-scaling of the HAART program from 2003 to 2008.
Laboratory-confirmed IPD cases were identified from 2003 through 2008 through an existing surveillance program. The period 2003-04 was designated as the early-HAART era, 2005–06 as the intermediate-HAART era and 2007–08 as the established-HAART era. The incidence of IPD was compared between the early-HAART and established-HAART eras in HIV-infected and–uninfected individuals.
A total of 2,567 IPD cases among individuals older than 18 years were reported from 2003 through 2008. Overall incidence of IPD (per 100,000) did not change during the study period in HIV-infected adults (207.4 cases in the early-HAART and 214.0 cases in the established-HAART era; p = 0.55). IPD incidence, actually increased 1.16-fold (95% CI: 1.01; 1.62) in HIV-infected females between the early-and established-HAART eras (212.1 cases and 246.2 cases, respectively; p = 0.03). The incidence of IPD remained unchanged in HIV-uninfected adults across the three time periods.
Despite a stable prevalence of HIV and the increased roll-out of HAART for treatment of AIDS patients in our setting, the burden of IPD has not decreased among HIV-infected adults. The study indicates a need for ongoing monitoring of disease and HAART program effectiveness to reduce opportunistic infections in African adults with HIV/AIDS, as well as the need to consider alternate strategies including pneumococcal conjugate vaccine immunization for the prevention of IPD in HIV-infected adults.
PMCID: PMC3225377  PMID: 22140487
8.  Conserved Mutations in the Pneumococcal Bacteriocin Transporter Gene, blpA, Result in a Complex Population Consisting of Producers and Cheaters 
mBio  2011;2(5):e00179-11.
All fully sequenced strains of Streptococcus pneumoniae possess a version of the blp locus, which is responsible for bacteriocin production and immunity. Activation of the blp locus is stimulated by accumulation of the peptide pheromone, BlpC, following its secretion by the ABC transporter, BlpA. The blp locus is characterized by significant diversity in blpC type and in the region of the locus containing putative bacteriocin and immunity genes. In addition, the blpA gene can represent a single large open reading frame or be divided into several smaller fragments due to the presence of frameshift mutations. In this study, we use a collection of strains with blp-dependent inhibition and immunity to define the genetic changes that bring about phenotypic differences in bacteriocin production or immunity. We demonstrate that alterations in blpA, blpC, and bacteriocin/immunity content likely play an important role in competitive interactions between pneumococcal strains. Importantly, strains with a highly conserved frameshift mutation in blpA are unable to secrete bacteriocins or BlpC, but retain the ability to respond to exogenous peptide pheromone produced by cocolonizing strains, stimulating blp-mediated immunity. These “cheater” strains can only coexist with bacteriocin-producing strains that secrete their cognate BlpC and share the same immunity proteins. The variable outcome of these interactions helps to explain the heterogeneity of the blp pheromone, bacteriocin, and immunity protein content.
Streptococcus pneumoniae resides in a polymicrobial environment and competes for limited resources by the elaboration of small antimicrobial peptides called bacteriocins. A conserved cluster of genes in the S. pneumoniae genome is involved in the production of bacteriocins and their associated protective immunity proteins through secretion of a signaling pheromone. In this study, we show that a significant number of strains have lost the ability to secrete bacteriocins and signaling pheromones due to a specific mutation in a dedicated transporter protein. Because the regulatory and immunity portion of the locus is retained, these “cheater” strains can survive in the face of invasion from a bacteriocin-producing strain without the cost of bacteriocin secretion. The outcome of such interactions depends on each strain’s repertoire of pheromone, immunity protein, and bacteriocin genes, such that intrastrain competition drives the diversity in bacteriocin, immunity protein, and pheromone content.
PMCID: PMC3171984  PMID: 21896678
9.  An Unusual Pneumococcal Sequence Type Is the Predominant Cause of Serotype 3 Invasive Disease in South Africa▿  
Journal of Clinical Microbiology  2009;48(1):184-191.
We reviewed pneumococcal serotype 3 cases reported from 2000 through 2005 to a laboratory-based surveillance system for invasive pneumococcal disease in South Africa. The prevalence of serotype 3 invasive isolates was compared to their prevalence in carriage isolates to determine the odds of invasiveness due to serotype 3 among South African children. Three groups of serotype 3 strains were characterized by pulsed-field gel electrophoresis (PFGE) or Box element PCR (BOX-PCR), randomly selected invasive isolates from one province, isolates from a carriage study involving children in the same province, and antimicrobial-resistant invasive isolates collected nationally. Examples of the PFGE types identified were further characterized by multilocus sequence typing. In total, 15,980 viable isolates causing invasive disease were submitted, of which 661 (4%) were serotype 3, mostly from adults (85% [489/575]). Fewer serotype 3 isolates were nonsusceptible to antimicrobial agents tested (40/661 [6%]) than non-serotype 3 isolates (8,480/15,319 [55%]) (P < 0.001). Compared to non-serotype 3 cases, there was no association with HIV coinfection (2,212/2,569 [86%] versus 72/78 [92%]; P = 0.1) or increased case fatality ratio (1,190/4,211 [28%] versus 54/154 [35%]; P = 0.7). Serotype 3 in children had a low but statistically insignificant invasive disease potential (odds ratio [OR] of 0.15; 95% confidence interval [CI] of 0.01 to 1.06). Strains were grouped into 3 PFGE clusters, with the largest, cluster A, representing 54% (84/155), including 14 isolates confirmed as sequence type 458 (ST458). It was confirmed that 3 isolates from cluster B, which represented only 12% (18/155) of the isolates, were the serotype 3 global strain, ST180. We have therefore identified ST458 as predominating in South Africa, but with an invasive potential similar to that of the predominant global clone ST180.
PMCID: PMC2812282  PMID: 19889905
10.  Molecular Characterization of Emerging Non-Levofloxacin-Susceptible Pneumococci Isolated from Children in South Africa▿  
Journal of Clinical Microbiology  2009;47(5):1319-1324.
Fluoroquinolones are not indicated for use for the treatment of pneumonia in children; however, non-levofloxacin-susceptible Streptococcus pneumoniae (NLSSP) has emerged in South Africa among children receiving treatment for multidrug-resistant tuberculosis. This study aimed to genotypically characterize NLSSP isolates. Invasive isolates were collected through active national laboratory-based surveillance for invasive pneumococcal disease (IPD) from 2000 through 2006 (n = 19,404). Carriage studies were conducted at two hospitals for patients with tuberculosis in two provinces. Phenotypic characterization was performed by determination of MICs and serotyping. Fluoroquinolone resistance mutations were identified, and clonality was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Twelve non-levofloxacin-susceptible cases of IPD were identified, and all were in children <15 years of age. Ten isolates were serotype 19F and formed two clusters according to their PFGE profiles, antibiogram types, and fluoroquinolone resistance-conferring mutations. All nine carriage isolates from children in hospital A were NLSSP, serotype 19F, were indistinguishable by PFGE, and were related to invasive isolates in cluster 2. Of 26 child carriers in hospital B, 22 (85%) were colonized with NLSSP. The isolates were indistinguishable by PFGE, although they displayed two serotypes, serotypes 19F and 23F. The isolates were related to invasive isolates in cluster 1; however, higher levofloxacin MICs and different fluoroquinolone resistance mutations were suggestive of horizontal gene transfer. A serotype 23F carriage isolate displayed increased fitness compared with the fitness of an otherwise indistinguishable serotype 19F carriage isolate. These data suggest that a low-level non-levofloxacin-susceptible strain transformed into a highly resistant strain under antibiotic pressure and underwent capsular switching in order to have increased fitness.
PMCID: PMC2681833  PMID: 19261799
11.  Neisseria meningitidis Intermediately Resistant to Penicillin and Causing Invasive Disease in South Africa in 2001 to 2005▿  
Journal of Clinical Microbiology  2008;46(10):3208-3214.
Neisseria meningitidis strains (meningococci) with decreased susceptibility to penicillin (MICs, >0.06 μg/ml) have been reported in several parts of the world, but the prevalence of such isolates in Africa is poorly described. Data from an active national laboratory-based surveillance program from January 2001 through December 2005 were analyzed. A total of 1,897 cases of invasive meningococcal disease were reported, with an average annual incidence of 0.83/100,000 population. Of these cases, 1,381 (73%) had viable isolates available for further testing; 87 (6%) of these isolates tested intermediately resistant to penicillin (Peni). Peni meningococcal isolates were distributed throughout all provinces and age groups, and there was no association with outcome or human immunodeficiency virus infection. The prevalence of Peni was lower in serogroup A (7/295; 2%) than in serogroup B (24/314; 8%), serogroup C (9/117; 8%), serogroup Y (22/248; 9%), or serogroup W135 (25/396; 6%) (P = 0.02). Pulsed-field gel electrophoresis grouped 63/82 Peni isolates into nine clusters, mostly according to serogroup. The clustering of patterns from Peni isolates was not different from that of penicillin-susceptible isolates. Twelve sequence types were identified among 18 isolates arbitrarily selected for multilocus sequence typing. DNA sequence analysis of the penA gene identified 26 different alleles among the Peni isolates. Intermediate penicillin resistance is thus widespread among meningococcal serogroups, has been selected in a variety of lineages, and, to date, does not appear to be associated with increased mortality. This is the first report describing the prevalence and molecular epidemiology of Peni meningococcal isolates from sub-Saharan Africa.
PMCID: PMC2566094  PMID: 18650361
12.  Meningococcal Disease in South Africa, 1999–2002 
Emerging Infectious Diseases  2007;13(2):273-281.
Serogroups and strains differ by location, although hypervirulent strains were identified throughout the country.
We describe the epidemiology of invasive meningococcal disease in South Africa from August 1999 through July 2002, as reported to a laboratory-based surveillance system. Neisseria meningitidis isolates were further characterized. In total, 854 cases of laboratory-confirmed disease were reported, with an annual incidence rate of 0.64/100,000 population. Incidence was highest in infants <1 year of age. Serogroup B caused 41% of cases; serogroup A, 23%; serogroup Y, 21%; serogroup C, 8%; and serogroup W135, 5%. Serogroup B was the predominant serogroup in Western Cape Province, and disease rates remained stable. Serogroup A was most prevalent in Gauteng Province and increased over the 3 years. On pulsed-field gel electrophoresis analysis, serogroup A strains showed clonality, and serogroup B demonstrated considerable diversity. Selected isolates of serogroup A belonged to sequence type (ST)-1 (subgroup I/II) complex, serogroup B to ST-32/electrophoretic type (ET)-5 complex, and serogroup W135 to ST-11/ET-37 complex.
PMCID: PMC2725855  PMID: 17479891
Neisseria meningitidis; serogroup; meningococcal disease; ST-complex; hypervirulent strains; MLST; PFGE; research

Results 1-12 (12)