PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  25th Annual Computational Neuroscience Meeting: CNS-2016 
Sharpee, Tatyana O. | Destexhe, Alain | Kawato, Mitsuo | Sekulić, Vladislav | Skinner, Frances K. | Wójcik, Daniel K. | Chintaluri, Chaitanya | Cserpán, Dorottya | Somogyvári, Zoltán | Kim, Jae Kyoung | Kilpatrick, Zachary P. | Bennett, Matthew R. | Josić, Kresimir | Elices, Irene | Arroyo, David | Levi, Rafael | Rodriguez, Francisco B. | Varona, Pablo | Hwang, Eunjin | Kim, Bowon | Han, Hio-Been | Kim, Tae | McKenna, James T. | Brown, Ritchie E. | McCarley, Robert W. | Choi, Jee Hyun | Rankin, James | Popp, Pamela Osborn | Rinzel, John | Tabas, Alejandro | Rupp, André | Balaguer-Ballester, Emili | Maturana, Matias I. | Grayden, David B. | Cloherty, Shaun L. | Kameneva, Tatiana | Ibbotson, Michael R. | Meffin, Hamish | Koren, Veronika | Lochmann, Timm | Dragoi, Valentin | Obermayer, Klaus | Psarrou, Maria | Schilstra, Maria | Davey, Neil | Torben-Nielsen, Benjamin | Steuber, Volker | Ju, Huiwen | Yu, Jiao | Hines, Michael L. | Chen, Liang | Yu, Yuguo | Kim, Jimin | Leahy, Will | Shlizerman, Eli | Birgiolas, Justas | Gerkin, Richard C. | Crook, Sharon M. | Viriyopase, Atthaphon | Memmesheimer, Raoul-Martin | Gielen, Stan | Dabaghian, Yuri | DeVito, Justin | Perotti, Luca | Kim, Anmo J. | Fenk, Lisa M. | Cheng, Cheng | Maimon, Gaby | Zhao, Chang | Widmer, Yves | Sprecher, Simon | Senn, Walter | Halnes, Geir | Mäki-Marttunen, Tuomo | Keller, Daniel | Pettersen, Klas H. | Andreassen, Ole A. | Einevoll, Gaute T. | Yamada, Yasunori | Steyn-Ross, Moira L. | Alistair Steyn-Ross, D. | Mejias, Jorge F. | Murray, John D. | Kennedy, Henry | Wang, Xiao-Jing | Kruscha, Alexandra | Grewe, Jan | Benda, Jan | Lindner, Benjamin | Badel, Laurent | Ohta, Kazumi | Tsuchimoto, Yoshiko | Kazama, Hokto | Kahng, B. | Tam, Nicoladie D. | Pollonini, Luca | Zouridakis, George | Soh, Jaehyun | Kim, DaeEun | Yoo, Minsu | Palmer, S. E. | Culmone, Viviana | Bojak, Ingo | Ferrario, Andrea | Merrison-Hort, Robert | Borisyuk, Roman | Kim, Chang Sub | Tezuka, Taro | Joo, Pangyu | Rho, Young-Ah | Burton, Shawn D. | Bard Ermentrout, G. | Jeong, Jaeseung | Urban, Nathaniel N. | Marsalek, Petr | Kim, Hoon-Hee | Moon, Seok-hyun | Lee, Do-won | Lee, Sung-beom | Lee, Ji-yong | Molkov, Yaroslav I. | Hamade, Khaldoun | Teka, Wondimu | Barnett, William H. | Kim, Taegyo | Markin, Sergey | Rybak, Ilya A. | Forro, Csaba | Dermutz, Harald | Demkó, László | Vörös, János | Babichev, Andrey | Huang, Haiping | Verduzco-Flores, Sergio | Dos Santos, Filipa | Andras, Peter | Metzner, Christoph | Schweikard, Achim | Zurowski, Bartosz | Roach, James P. | Sander, Leonard M. | Zochowski, Michal R. | Skilling, Quinton M. | Ognjanovski, Nicolette | Aton, Sara J. | Zochowski, Michal | Wang, Sheng-Jun | Ouyang, Guang | Guang, Jing | Zhang, Mingsha | Michael Wong, K. Y. | Zhou, Changsong | Robinson, Peter A. | Sanz-Leon, Paula | Drysdale, Peter M. | Fung, Felix | Abeysuriya, Romesh G. | Rennie, Chris J. | Zhao, Xuelong | Choe, Yoonsuck | Yang, Huei-Fang | Mi, Yuanyuan | Lin, Xiaohan | Wu, Si | Liedtke, Joscha | Schottdorf, Manuel | Wolf, Fred | Yamamura, Yoriko | Wickens, Jeffery R. | Rumbell, Timothy | Ramsey, Julia | Reyes, Amy | Draguljić, Danel | Hof, Patrick R. | Luebke, Jennifer | Weaver, Christina M. | He, Hu | Yang, Xu | Ma, Hailin | Xu, Zhiheng | Wang, Yuzhe | Baek, Kwangyeol | Morris, Laurel S. | Kundu, Prantik | Voon, Valerie | Agnes, Everton J. | Vogels, Tim P. | Podlaski, William F. | Giese, Martin | Kuravi, Pradeep | Vogels, Rufin | Seeholzer, Alexander | Podlaski, William | Ranjan, Rajnish | Vogels, Tim | Torres, Joaquin J. | Baroni, Fabiano | Latorre, Roberto | Gips, Bart | Lowet, Eric | Roberts, Mark J. | de Weerd, Peter | Jensen, Ole | van der Eerden, Jan | Goodarzinick, Abdorreza | Niry, Mohammad D. | Valizadeh, Alireza | Pariz, Aref | Parsi, Shervin S. | Warburton, Julia M. | Marucci, Lucia | Tamagnini, Francesco | Brown, Jon | Tsaneva-Atanasova, Krasimira | Kleberg, Florence I. | Triesch, Jochen | Moezzi, Bahar | Iannella, Nicolangelo | Schaworonkow, Natalie | Plogmacher, Lukas | Goldsworthy, Mitchell R. | Hordacre, Brenton | McDonnell, Mark D. | Ridding, Michael C. | Zapotocky, Martin | Smit, Daniel | Fouquet, Coralie | Trembleau, Alain | Dasgupta, Sakyasingha | Nishikawa, Isao | Aihara, Kazuyuki | Toyoizumi, Taro | Robb, Daniel T. | Mellen, Nick | Toporikova, Natalia | Tang, Rongxiang | Tang, Yi-Yuan | Liang, Guangsheng | Kiser, Seth A. | Howard, James H. | Goncharenko, Julia | Voronenko, Sergej O. | Ahamed, Tosif | Stephens, Greg | Yger, Pierre | Lefebvre, Baptiste | Spampinato, Giulia Lia Beatrice | Esposito, Elric | et Olivier Marre, Marcel Stimberg | Choi, Hansol | Song, Min-Ho | Chung, SueYeon | Lee, Dan D. | Sompolinsky, Haim | Phillips, Ryan S. | Smith, Jeffrey | Chatzikalymniou, Alexandra Pierri | Ferguson, Katie | Alex Cayco Gajic, N. | Clopath, Claudia | Angus Silver, R. | Gleeson, Padraig | Marin, Boris | Sadeh, Sadra | Quintana, Adrian | Cantarelli, Matteo | Dura-Bernal, Salvador | Lytton, William W. | Davison, Andrew | Li, Luozheng | Zhang, Wenhao | Wang, Dahui | Song, Youngjo | Park, Sol | Choi, Ilhwan | Shin, Hee-sup | Choi, Hannah | Pasupathy, Anitha | Shea-Brown, Eric | Huh, Dongsung | Sejnowski, Terrence J. | Vogt, Simon M. | Kumar, Arvind | Schmidt, Robert | Van Wert, Stephen | Schiff, Steven J. | Veale, Richard | Scheutz, Matthias | Lee, Sang Wan | Gallinaro, Júlia | Rotter, Stefan | Rubchinsky, Leonid L. | Cheung, Chung Ching | Ratnadurai-Giridharan, Shivakeshavan | Shomali, Safura Rashid | Ahmadabadi, Majid Nili | Shimazaki, Hideaki | Nader Rasuli, S. | Zhao, Xiaochen | Rasch, Malte J. | Wilting, Jens | Priesemann, Viola | Levina, Anna | Rudelt, Lucas | Lizier, Joseph T. | Spinney, Richard E. | Rubinov, Mikail | Wibral, Michael | Bak, Ji Hyun | Pillow, Jonathan | Zaho, Yuan | Park, Il Memming | Kang, Jiyoung | Park, Hae-Jeong | Jang, Jaeson | Paik, Se-Bum | Choi, Woochul | Lee, Changju | Song, Min | Lee, Hyeonsu | Park, Youngjin | Yilmaz, Ergin | Baysal, Veli | Ozer, Mahmut | Saska, Daniel | Nowotny, Thomas | Chan, Ho Ka | Diamond, Alan | Herrmann, Christoph S. | Murray, Micah M. | Ionta, Silvio | Hutt, Axel | Lefebvre, Jérémie | Weidel, Philipp | Duarte, Renato | Morrison, Abigail | Lee, Jung H. | Iyer, Ramakrishnan | Mihalas, Stefan | Koch, Christof | Petrovici, Mihai A. | Leng, Luziwei | Breitwieser, Oliver | Stöckel, David | Bytschok, Ilja | Martel, Roman | Bill, Johannes | Schemmel, Johannes | Meier, Karlheinz | Esler, Timothy B. | Burkitt, Anthony N. | Kerr, Robert R. | Tahayori, Bahman | Nolte, Max | Reimann, Michael W. | Muller, Eilif | Markram, Henry | Parziale, Antonio | Senatore, Rosa | Marcelli, Angelo | Skiker, K. | Maouene, M. | Neymotin, Samuel A. | Seidenstein, Alexandra | Lakatos, Peter | Sanger, Terence D. | Menzies, Rosemary J. | McLauchlan, Campbell | van Albada, Sacha J. | Kedziora, David J. | Neymotin, Samuel | Kerr, Cliff C. | Suter, Benjamin A. | Shepherd, Gordon M. G. | Ryu, Juhyoung | Lee, Sang-Hun | Lee, Joonwon | Lee, Hyang Jung | Lim, Daeseob | Wang, Jisung | Lee, Heonsoo | Jung, Nam | Anh Quang, Le | Maeng, Seung Eun | Lee, Tae Ho | Lee, Jae Woo | Park, Chang-hyun | Ahn, Sora | Moon, Jangsup | Choi, Yun Seo | Kim, Juhee | Jun, Sang Beom | Lee, Seungjun | Lee, Hyang Woon | Jo, Sumin | Jun, Eunji | Yu, Suin | Goetze, Felix | Lai, Pik-Yin | Kim, Seonghyun | Kwag, Jeehyun | Jang, Hyun Jae | Filipović, Marko | Reig, Ramon | Aertsen, Ad | Silberberg, Gilad | Bachmann, Claudia | Buttler, Simone | Jacobs, Heidi | Dillen, Kim | Fink, Gereon R. | Kukolja, Juraj | Kepple, Daniel | Giaffar, Hamza | Rinberg, Dima | Shea, Steven | Koulakov, Alex | Bahuguna, Jyotika | Tetzlaff, Tom | Kotaleski, Jeanette Hellgren | Kunze, Tim | Peterson, Andre | Knösche, Thomas | Kim, Minjung | Kim, Hojeong | Park, Ji Sung | Yeon, Ji Won | Kim, Sung-Phil | Kang, Jae-Hwan | Lee, Chungho | Spiegler, Andreas | Petkoski, Spase | Palva, Matias J. | Jirsa, Viktor K. | Saggio, Maria L. | Siep, Silvan F. | Stacey, William C. | Bernar, Christophe | Choung, Oh-hyeon | Jeong, Yong | Lee, Yong-il | Kim, Su Hyun | Jeong, Mir | Lee, Jeungmin | Kwon, Jaehyung | Kralik, Jerald D. | Jahng, Jaehwan | Hwang, Dong-Uk | Kwon, Jae-Hyung | Park, Sang-Min | Kim, Seongkyun | Kim, Hyoungkyu | Kim, Pyeong Soo | Yoon, Sangsup | Lim, Sewoong | Park, Choongseok | Miller, Thomas | Clements, Katie | Ahn, Sungwoo | Ji, Eoon Hye | Issa, Fadi A. | Baek, JeongHun | Oba, Shigeyuki | Yoshimoto, Junichiro | Doya, Kenji | Ishii, Shin | Mosqueiro, Thiago S. | Strube-Bloss, Martin F. | Smith, Brian | Huerta, Ramon | Hadrava, Michal | Hlinka, Jaroslav | Bos, Hannah | Helias, Moritz | Welzig, Charles M. | Harper, Zachary J. | Kim, Won Sup | Shin, In-Seob | Baek, Hyeon-Man | Han, Seung Kee | Richter, René | Vitay, Julien | Beuth, Frederick | Hamker, Fred H. | Toppin, Kelly | Guo, Yixin | Graham, Bruce P. | Kale, Penelope J. | Gollo, Leonardo L. | Stern, Merav | Abbott, L. F. | Fedorov, Leonid A. | Giese, Martin A. | Ardestani, Mohammad Hovaidi | Faraji, Mohammad Javad | Preuschoff, Kerstin | Gerstner, Wulfram | van Gendt, Margriet J. | Briaire, Jeroen J. | Kalkman, Randy K. | Frijns, Johan H. M. | Lee, Won Hee | Frangou, Sophia | Fulcher, Ben D. | Tran, Patricia H. P. | Fornito, Alex | Gliske, Stephen V. | Lim, Eugene | Holman, Katherine A. | Fink, Christian G. | Kim, Jinseop S. | Mu, Shang | Briggman, Kevin L. | Sebastian Seung, H. | Wegener, Detlef | Bohnenkamp, Lisa | Ernst, Udo A. | Devor, Anna | Dale, Anders M. | Lines, Glenn T. | Edwards, Andy | Tveito, Aslak | Hagen, Espen | Senk, Johanna | Diesmann, Markus | Schmidt, Maximilian | Bakker, Rembrandt | Shen, Kelly | Bezgin, Gleb | Hilgetag, Claus-Christian | van Albada, Sacha Jennifer | Sun, Haoqi | Sourina, Olga | Huang, Guang-Bin | Klanner, Felix | Denk, Cornelia | Glomb, Katharina | Ponce-Alvarez, Adrián | Gilson, Matthieu | Ritter, Petra | Deco, Gustavo | Witek, Maria A. G. | Clarke, Eric F. | Hansen, Mads | Wallentin, Mikkel | Kringelbach, Morten L. | Vuust, Peter | Klingbeil, Guido | De Schutter, Erik | Chen, Weiliang | Zang, Yunliang | Hong, Sungho | Takashima, Akira | Zamora, Criseida | Gallimore, Andrew R. | Goldschmidt, Dennis | Manoonpong, Poramate | Karoly, Philippa J. | Freestone, Dean R. | Soundry, Daniel | Kuhlmann, Levin | Paninski, Liam | Cook, Mark | Lee, Jaejin | Fishman, Yonatan I. | Cohen, Yale E. | Roberts, James A. | Cocchi, Luca | Sweeney, Yann | Lee, Soohyun | Jung, Woo-Sung | Kim, Youngsoo | Jung, Younginha | Song, Yoon-Kyu | Chavane, Frédéric | Soman, Karthik | Muralidharan, Vignesh | Srinivasa Chakravarthy, V. | Shivkumar, Sabyasachi | Mandali, Alekhya | Pragathi Priyadharsini, B. | Mehta, Hima | Davey, Catherine E. | Brinkman, Braden A. W. | Kekona, Tyler | Rieke, Fred | Buice, Michael | De Pittà, Maurizio | Berry, Hugues | Brunel, Nicolas | Breakspear, Michael | Marsat, Gary | Drew, Jordan | Chapman, Phillip D. | Daly, Kevin C. | Bradle, Samual P. | Seo, Sat Byul | Su, Jianzhong | Kavalali, Ege T. | Blackwell, Justin | Shiau, LieJune | Buhry, Laure | Basnayake, Kanishka | Lee, Sue-Hyun | Levy, Brandon A. | Baker, Chris I. | Leleu, Timothée | Philips, Ryan T. | Chhabria, Karishma
BMC Neuroscience  2016;17(Suppl 1):54.
Table of contents
A1 Functional advantages of cell-type heterogeneity in neural circuits
Tatyana O. Sharpee
A2 Mesoscopic modeling of propagating waves in visual cortex
Alain Destexhe
A3 Dynamics and biomarkers of mental disorders
Mitsuo Kawato
F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons
Vladislav Sekulić, Frances K. Skinner
F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains
Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári
F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.
Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić
O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators
Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona
O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain
Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi
O3 Modeling auditory stream segregation, build-up and bistability
James Rankin, Pamela Osborn Popp, John Rinzel
O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields
Alejandro Tabas, André Rupp, Emili Balaguer-Ballester
O5 A simple model of retinal response to multi-electrode stimulation
Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin
O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task
Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer
O7 Input-location dependent gain modulation in cerebellar nucleus neurons
Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker Steuber
O8 Analytic solution of cable energy function for cortical axons and dendrites
Huiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo Yu
O9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal network
Jimin Kim, Will Leahy, Eli Shlizerman
O10 Is the model any good? Objective criteria for computational neuroscience model selection
Justas Birgiolas, Richard C. Gerkin, Sharon M. Crook
O11 Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan Gielen
O12 A discrete structure of the brain waves
Yuri Dabaghian, Justin DeVito, Luca Perotti
O13 Direction-specific silencing of the Drosophila gaze stabilization system
Anmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby Maimon
O14 What does the fruit fly think about values? A model of olfactory associative learning
Chang Zhao, Yves Widmer, Simon Sprecher,Walter Senn
O15 Effects of ionic diffusion on power spectra of local field potentials (LFP)
Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen, Gaute T. Einevoll
O16 Large-scale cortical models towards understanding relationship between brain structure abnormalities and cognitive deficits
Yasunori Yamada
O17 Spatial coarse-graining the brain: origin of minicolumns
Moira L. Steyn-Ross, D. Alistair Steyn-Ross
O18 Modeling large-scale cortical networks with laminar structure
Jorge F. Mejias, John D. Murray, Henry Kennedy, Xiao-Jing Wang
O19 Information filtering by partial synchronous spikes in a neural population
Alexandra Kruscha, Jan Grewe, Jan Benda, Benjamin Lindner
O20 Decoding context-dependent olfactory valence in Drosophila
Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama
P1 Neural network as a scale-free network: the role of a hub
B. Kahng
P2 Hemodynamic responses to emotions and decisions using near-infrared spectroscopy optical imaging
Nicoladie D. Tam
P3 Phase space analysis of hemodynamic responses to intentional movement directions using functional near-infrared spectroscopy (fNIRS) optical imaging technique
Nicoladie D.Tam, Luca Pollonini, George Zouridakis
P4 Modeling jamming avoidance of weakly electric fish
Jaehyun Soh, DaeEun Kim
P5 Synergy and redundancy of retinal ganglion cells in prediction
Minsu Yoo, S. E. Palmer
P6 A neural field model with a third dimension representing cortical depth
Viviana Culmone, Ingo Bojak
P7 Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord
Andrea Ferrario, Robert Merrison-Hort, Roman Borisyuk
P8 The recognition dynamics in the brain
Chang Sub Kim
P9 Multivariate spike train analysis using a positive definite kernel
Taro Tezuka
P10 Synchronization of burst periods may govern slow brain dynamics during general anesthesia
Pangyu Joo
P11 The ionic basis of heterogeneity affects stochastic synchrony
Young-Ah Rho, Shawn D. Burton, G. Bard Ermentrout, Jaeseung Jeong, Nathaniel N. Urban
P12 Circular statistics of noise in spike trains with a periodic component
Petr Marsalek
P14 Representations of directions in EEG-BCI using Gaussian readouts
Hoon-Hee Kim, Seok-hyun Moon, Do-won Lee, Sung-beom Lee, Ji-yong Lee, Jaeseung Jeong
P15 Action selection and reinforcement learning in basal ganglia during reaching movements
Yaroslav I. Molkov, Khaldoun Hamade, Wondimu Teka, William H. Barnett, Taegyo Kim, Sergey Markin, Ilya A. Rybak
P17 Axon guidance: modeling axonal growth in T-Junction assay
Csaba Forro, Harald Dermutz, László Demkó, János Vörös
P19 Transient cell assembly networks encode persistent spatial memories
Yuri Dabaghian, Andrey Babichev
P20 Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons
Haiping Huang
P21 Design of biologically-realistic simulations for motor control
Sergio Verduzco-Flores
P22 Towards understanding the functional impact of the behavioural variability of neurons
Filipa Dos Santos, Peter Andras
P23 Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia
Christoph Metzner, Achim Schweikard, Bartosz Zurowski
P24 Memory recall and spike frequency adaptation
James P. Roach, Leonard M. Sander, Michal R. Zochowski
P25 Stability of neural networks and memory consolidation preferentially occur near criticality
Quinton M. Skilling, Nicolette Ognjanovski, Sara J. Aton, Michal Zochowski
P26 Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems
Sheng-Jun Wang, Guang Ouyang, Jing Guang, Mingsha Zhang, K. Y. Michael Wong, Changsong Zhou
P27 Neurofield: a C++ library for fast simulation of 2D neural field models
Peter A. Robinson, Paula Sanz-Leon, Peter M. Drysdale, Felix Fung, Romesh G. Abeysuriya, Chris J. Rennie, Xuelong Zhao
P28 Action-based grounding: Beyond encoding/decoding in neural code
Yoonsuck Choe, Huei-Fang Yang
P29 Neural computation in a dynamical system with multiple time scales
Yuanyuan Mi, Xiaohan Lin, Si Wu
P30 Maximum entropy models for 3D layouts of orientation selectivity
Joscha Liedtke, Manuel Schottdorf, Fred Wolf
P31 A behavioral assay for probing computations underlying curiosity in rodents
Yoriko Yamamura, Jeffery R. Wickens
P32 Using statistical sampling to balance error function contributions to optimization of conductance-based models
Timothy Rumbell, Julia Ramsey, Amy Reyes, Danel Draguljić, Patrick R. Hof, Jennifer Luebke, Christina M. Weaver
P33 Exploration and implementation of a self-growing and self-organizing neuron network building algorithm
Hu He, Xu Yang, Hailin Ma, Zhiheng Xu, Yuzhe Wang
P34 Disrupted resting state brain network in obese subjects: a data-driven graph theory analysis
Kwangyeol Baek, Laurel S. Morris, Prantik Kundu, Valerie Voon
P35 Dynamics of cooperative excitatory and inhibitory plasticity
Everton J. Agnes, Tim P. Vogels
P36 Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire neurons
William F. Podlaski, Tim P. Vogels
P37 Phenomenological neural model for adaptation of neurons in area IT
Martin Giese, Pradeep Kuravi, Rufin Vogels
P38 ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment
Alexander Seeholzer, William Podlaski, Rajnish Ranjan, Tim Vogels
P39 Temporal input discrimination from the interaction between dynamic synapses and neural subthreshold oscillations
Joaquin J. Torres, Fabiano Baroni, Roberto Latorre, Pablo Varona
P40 Different roles for transient and sustained activity during active visual processing
Bart Gips, Eric Lowet, Mark J. Roberts, Peter de Weerd, Ole Jensen, Jan van der Eerden
P41 Scale-free functional networks of 2D Ising model are highly robust against structural defects: neuroscience implications
Abdorreza Goodarzinick, Mohammad D. Niry, Alireza Valizadeh
P42 High frequency neuron can facilitate propagation of signal in neural networks
Aref Pariz, Shervin S. Parsi, Alireza Valizadeh
P43 Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in the CA1 region of the hippocampus
Julia M. Warburton, Lucia Marucci, Francesco Tamagnini, Jon Brown, Krasimira Tsaneva-Atanasova
P44 Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP and iSTDP
Florence I. Kleberg, Jochen Triesch
P45 Simulation of EMG recording from hand muscle due to TMS of motor cortex
Bahar Moezzi, Nicolangelo Iannella, Natalie Schaworonkow, Lukas Plogmacher, Mitchell R. Goldsworthy, Brenton Hordacre, Mark D. McDonnell, Michael C. Ridding, Jochen Triesch
P46 Structure and dynamics of axon network formed in primary cell culture
Martin Zapotocky, Daniel Smit, Coralie Fouquet, Alain Trembleau
P47 Efficient signal processing and sampling in random networks that generate variability
Sakyasingha Dasgupta, Isao Nishikawa, Kazuyuki Aihara, Taro Toyoizumi
P48 Modeling the effect of riluzole on bursting in respiratory neural networks
Daniel T. Robb, Nick Mellen, Natalia Toporikova
P49 Mapping relaxation training using effective connectivity analysis
Rongxiang Tang, Yi-Yuan Tang
P50 Modeling neuron oscillation of implicit sequence learning
Guangsheng Liang, Seth A. Kiser, James H. Howard, Jr., Yi-Yuan Tang
P51 The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat nystagmus
Julia Goncharenko, Neil Davey, Maria Schilstra, Volker Steuber
P52 Nonlinear response of noisy neurons
Sergej O. Voronenko, Benjamin Lindner
P53 Behavioral embedding suggests multiple chaotic dimensions underlie C. elegans locomotion
Tosif Ahamed, Greg Stephens
P54 Fast and scalable spike sorting for large and dense multi-electrodes recordings
Pierre Yger, Baptiste Lefebvre, Giulia Lia Beatrice Spampinato, Elric Esposito, Marcel Stimberg et Olivier Marre
P55 Sufficient sampling rates for fast hand motion tracking
Hansol Choi, Min-Ho Song
P56 Linear readout of object manifolds
SueYeon Chung, Dan D. Lee, Haim Sompolinsky
P57 Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-Bötzinger complex using phase response curves
Ryan S. Phillips, Jeffrey Smith
P58 The effect of inhibitory cell network interactions during theta rhythms on extracellular field potentials in CA1 hippocampus
Alexandra Pierri Chatzikalymniou, Katie Ferguson, Frances K. Skinner
P59 Expansion recoding through sparse sampling in the cerebellar input layer speeds learning
N. Alex Cayco Gajic, Claudia Clopath, R. Angus Silver
P60 A set of curated cortical models at multiple scales on Open Source Brain
Padraig Gleeson, Boris Marin, Sadra Sadeh, Adrian Quintana, Matteo Cantarelli, Salvador Dura-Bernal, William W. Lytton, Andrew Davison, R. Angus Silver
P61 A synaptic story of dynamical information encoding in neural adaptation
Luozheng Li, Wenhao Zhang, Yuanyuan Mi, Dahui Wang, Si Wu
P62 Physical modeling of rule-observant rodent behavior
Youngjo Song, Sol Park, Ilhwan Choi, Jaeseung Jeong, Hee-sup Shin
P64 Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially occluded shapes
Hannah Choi, Anitha Pasupathy, Eric Shea-Brown
P65 Stability of FORCE learning on spiking and rate-based networks
Dongsung Huh, Terrence J. Sejnowski
P66 Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments
Simon M. Vogt, Arvind Kumar, Robert Schmidt
P67 Electrodiffusion in one- and two-compartment neuron models for characterizing cellular effects of electrical stimulation
Stephen Van Wert, Steven J. Schiff
P68 STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via differential evolution Markov Chain Monte Carlo
Richard Veale, Matthias Scheutz
P69 Bidirectional transformation between dominant cortical neural activities and phase difference distributions
Sang Wan Lee
P70 Maturation of sensory networks through homeostatic structural plasticity
Júlia Gallinaro, Stefan Rotter
P71 Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions in the space of synaptic couplings
Paula Sanz-Leon, Peter A. Robinson
P72 Optogenetic versus electrical stimulation of the parkinsonian basal ganglia. Computational study
Leonid L. Rubchinsky, Chung Ching Cheung, Shivakeshavan Ratnadurai-Giridharan
P73 Exact spike-timing distribution reveals higher-order interactions of neurons
Safura Rashid Shomali, Majid Nili Ahmadabadi, Hideaki Shimazaki, S. Nader Rasuli
P74 Neural mechanism of visual perceptual learning using a multi-layered neural network
Xiaochen Zhao, Malte J. Rasch
P75 Inferring collective spiking dynamics from mostly unobserved systems
Jens Wilting, Viola Priesemann
P76 How to infer distributions in the brain from subsampled observations
Anna Levina, Viola Priesemann
P77 Influences of embedding and estimation strategies on the inferred memory of single spiking neurons
Lucas Rudelt, Joseph T. Lizier, Viola Priesemann
P78 A nearest-neighbours based estimator for transfer entropy between spike trains
Joseph T. Lizier, Richard E. Spinney, Mikail Rubinov, Michael Wibral, Viola Priesemann
P79 Active learning of psychometric functions with multinomial logistic models
Ji Hyun Bak, Jonathan Pillow
P81 Inferring low-dimensional network dynamics with variational latent Gaussian process
Yuan Zaho, Il Memming Park
P82 Computational investigation of energy landscapes in the resting state subcortical brain network
Jiyoung Kang, Hae-Jeong Park
P83 Local repulsive interaction between retinal ganglion cells can generate a consistent spatial periodicity of orientation map
Jaeson Jang, Se-Bum Paik
P84 Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under noisy condition
Woochul Choi, Se-Bum Paik
P85 Feedforward convergence between retina and primary visual cortex can determine the structure of orientation map
Changju Lee, Jaeson Jang, Se-Bum Paik
P86 Computational method classifying neural network activity patterns for imaging data
Min Song, Hyeonsu Lee, Se-Bum Paik
P87 Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory
Youngjin Park, Woochul Choi, Se-Bum Paik
P88 Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free network of stochastic Hodgkin-Huxley neurons
Ergin Yilmaz, Veli Baysal, Mahmut Ozer
P89 Spectral properties of spiking responses in V1 and V4 change within the trial and are highly relevant for behavioral performance
Veronika Koren, Klaus Obermayer
P90 Methods for building accurate models of individual neurons
Daniel Saska, Thomas Nowotny
P91 A full size mathematical model of the early olfactory system of honeybees
Ho Ka Chan, Alan Diamond, Thomas Nowotny
P92 Stimulation-induced tuning of ongoing oscillations in spiking neural networks
Christoph S. Herrmann, Micah M. Murray, Silvio Ionta, Axel Hutt, Jérémie Lefebvre
P93 Decision-specific sequences of neural activity in balanced random networks driven by structured sensory input
Philipp Weidel, Renato Duarte, Abigail Morrison
P94 Modulation of tuning induced by abrupt reduction of SST cell activity
Jung H. Lee, Ramakrishnan Iyer, Stefan Mihalas
P95 The functional role of VIP cell activation during locomotion
Jung H. Lee, Ramakrishnan Iyer, Christof Koch, Stefan Mihalas
P96 Stochastic inference with spiking neural networks
Mihai A. Petrovici, Luziwei Leng, Oliver Breitwieser, David Stöckel, Ilja Bytschok, Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier
P97 Modeling orientation-selective electrical stimulation with retinal prostheses
Timothy B. Esler, Anthony N. Burkitt, David B. Grayden, Robert R. Kerr, Bahman Tahayori, Hamish Meffin
P98 Ion channel noise can explain firing correlation in auditory nerves
Bahar Moezzi, Nicolangelo Iannella, Mark D. McDonnell
P99 Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit
Max Nolte, Michael W. Reimann, Eilif Muller, Henry Markram
P100 On the representation of arm reaching movements: a computational model
Antonio Parziale, Rosa Senatore, Angelo Marcelli
P101 A computational model for investigating the role of cerebellum in acquisition and retention of motor behavior
Rosa Senatore, Antonio Parziale, Angelo Marcelli
P102 The emergence of semantic categories from a large-scale brain network of semantic knowledge
K. Skiker, M. Maouene
P103 Multiscale modeling of M1 multitarget pharmacotherapy for dystonia
Samuel A. Neymotin, Salvador Dura-Bernal, Alexandra Seidenstein, Peter Lakatos, Terence D. Sanger, William W. Lytton
P104 Effect of network size on computational capacity
Salvador Dura-Bernal, Rosemary J. Menzies, Campbell McLauchlan, Sacha J. van Albada, David J. Kedziora, Samuel Neymotin, William W. Lytton, Cliff C. Kerr
P105 NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks
Salvador Dura-Bernal, Benjamin A. Suter, Samuel A. Neymotin, Cliff C. Kerr, Adrian Quintana, Padraig Gleeson, Gordon M. G. Shepherd, William W. Lytton
P107 Inter-areal and inter-regional inhomogeneity in co-axial anisotropy of Cortical Point Spread in human visual areas
Juhyoung Ryu, Sang-Hun Lee
P108 Two bayesian quanta of uncertainty explain the temporal dynamics of cortical activity in the non-sensory areas during bistable perception
Joonwon Lee, Sang-Hun Lee
P109 Optimal and suboptimal integration of sensory and value information in perceptual decision making
Hyang Jung Lee, Sang-Hun Lee
P110 A Bayesian algorithm for phoneme Perception and its neural implementation
Daeseob Lim, Sang-Hun Lee
P111 Complexity of EEG signals is reduced during unconsciousness induced by ketamine and propofol
Jisung Wang, Heonsoo Lee
P112 Self-organized criticality of neural avalanche in a neural model on complex networks
Nam Jung, Le Anh Quang, Seung Eun Maeng, Tae Ho Lee, Jae Woo Lee
P113 Dynamic alterations in connection topology of the hippocampal network during ictal-like epileptiform activity in an in vitro rat model
Chang-hyun Park, Sora Ahn, Jangsup Moon, Yun Seo Choi, Juhee Kim, Sang Beom Jun, Seungjun Lee, Hyang Woon Lee
P114 Computational model to replicate seizure suppression effect by electrical stimulation
Sora Ahn, Sumin Jo, Eunji Jun, Suin Yu, Hyang Woon Lee, Sang Beom Jun, Seungjun Lee
P115 Identifying excitatory and inhibitory synapses in neuronal networks from spike trains using sorted local transfer entropy
Felix Goetze, Pik-Yin Lai
P116 Neural network model for obstacle avoidance based on neuromorphic computational model of boundary vector cell and head direction cell
Seonghyun Kim, Jeehyun Kwag
P117 Dynamic gating of spike pattern propagation by Hebbian and anti-Hebbian spike timing-dependent plasticity in excitatory feedforward network model
Hyun Jae Jang, Jeehyun Kwag
P118 Inferring characteristics of input correlations of cells exhibiting up-down state transitions in the rat striatum
Marko Filipović, Ramon Reig, Ad Aertsen, Gilad Silberberg, Arvind Kumar
P119 Graph properties of the functional connected brain under the influence of Alzheimer’s disease
Claudia Bachmann, Simone Buttler, Heidi Jacobs, Kim Dillen, Gereon R. Fink, Juraj Kukolja, Abigail Morrison
P120 Learning sparse representations in the olfactory bulb
Daniel Kepple, Hamza Giaffar, Dima Rinberg, Steven Shea, Alex Koulakov
P121 Functional classification of homologous basal-ganglia networks
Jyotika Bahuguna,Tom Tetzlaff, Abigail Morrison, Arvind Kumar, Jeanette Hellgren Kotaleski
P122 Short term memory based on multistability
Tim Kunze, Andre Peterson, Thomas Knösche
P123 A physiologically plausible, computationally efficient model and simulation software for mammalian motor units
Minjung Kim, Hojeong Kim
P125 Decoding laser-induced somatosensory information from EEG
Ji Sung Park, Ji Won Yeon, Sung-Phil Kim
P126 Phase synchronization of alpha activity for EEG-based personal authentication
Jae-Hwan Kang, Chungho Lee, Sung-Phil Kim
P129 Investigating phase-lags in sEEG data using spatially distributed time delays in a large-scale brain network model
Andreas Spiegler, Spase Petkoski, Matias J. Palva, Viktor K. Jirsa
P130 Epileptic seizures in the unfolding of a codimension-3 singularity
Maria L. Saggio, Silvan F. Siep, Andreas Spiegler, William C. Stacey, Christophe Bernard, Viktor K. Jirsa
P131 Incremental dimensional exploratory reasoning under multi-dimensional environment
Oh-hyeon Choung, Yong Jeong
P132 A low-cost model of eye movements and memory in personal visual cognition
Yong-il Lee, Jaeseung Jeong
P133 Complex network analysis of structural connectome of autism spectrum disorder patients
Su Hyun Kim, Mir Jeong, Jaeseung Jeong
P134 Cognitive motives and the neural correlates underlying human social information transmission, gossip
Jeungmin Lee, Jaehyung Kwon, Jerald D. Kralik, Jaeseung Jeong
P135 EEG hyperscanning detects neural oscillation for the social interaction during the economic decision-making
Jaehwan Jahng, Dong-Uk Hwang, Jaeseung Jeong
P136 Detecting purchase decision based on hyperfrontality of the EEG
Jae-Hyung Kwon, Sang-Min Park, Jaeseung Jeong
P137 Vulnerability-based critical neurons, synapses, and pathways in the Caenorhabditis elegans connectome
Seongkyun Kim, Hyoungkyu Kim, Jerald D. Kralik, Jaeseung Jeong
P138 Motif analysis reveals functionally asymmetrical neurons in C. elegans
Pyeong Soo Kim, Seongkyun Kim, Hyoungkyu Kim, Jaeseung Jeong
P139 Computational approach to preference-based serial decision dynamics: do temporal discounting and working memory affect it?
Sangsup Yoon, Jaehyung Kwon, Sewoong Lim, Jaeseung Jeong
P141 Social stress induced neural network reconfiguration affects decision making and learning in zebrafish
Choongseok Park, Thomas Miller, Katie Clements, Sungwoo Ahn, Eoon Hye Ji, Fadi A. Issa
P142 Descriptive, generative, and hybrid approaches for neural connectivity inference from neural activity data
JeongHun Baek, Shigeyuki Oba, Junichiro Yoshimoto, Kenji Doya, Shin Ishii
P145 Divergent-convergent synaptic connectivities accelerate coding in multilayered sensory systems
Thiago S. Mosqueiro, Martin F. Strube-Bloss, Brian Smith, Ramon Huerta
P146 Swinging networks
Michal Hadrava, Jaroslav Hlinka
P147 Inferring dynamically relevant motifs from oscillatory stimuli: challenges, pitfalls, and solutions
Hannah Bos, Moritz Helias
P148 Spatiotemporal mapping of brain network dynamics during cognitive tasks using magnetoencephalography and deep learning
Charles M. Welzig, Zachary J. Harper
P149 Multiscale complexity analysis for the segmentation of MRI images
Won Sup Kim, In-Seob Shin, Hyeon-Man Baek, Seung Kee Han
P150 A neuro-computational model of emotional attention
René Richter, Julien Vitay, Frederick Beuth, Fred H. Hamker
P151 Multi-site delayed feedback stimulation in parkinsonian networks
Kelly Toppin, Yixin Guo
P152 Bistability in Hodgkin–Huxley-type equations
Tatiana Kameneva, Hamish Meffin, Anthony N. Burkitt, David B. Grayden
P153 Phase changes in postsynaptic spiking due to synaptic connectivity and short term plasticity: mathematical analysis of frequency dependency
Mark D. McDonnell, Bruce P. Graham
P154 Quantifying resilience patterns in brain networks: the importance of directionality
Penelope J. Kale, Leonardo L. Gollo
P155 Dynamics of rate-model networks with separate excitatory and inhibitory populations
Merav Stern, L. F. Abbott
P156 A model for multi-stable dynamics in action recognition modulated by integration of silhouette and shading cues
Leonid A. Fedorov, Martin A. Giese
P157 Spiking model for the interaction between action recognition and action execution
Mohammad Hovaidi Ardestani, Martin Giese
P158 Surprise-modulated belief update: how to learn within changing environments?
Mohammad Javad Faraji, Kerstin Preuschoff, Wulfram Gerstner
P159 A fast, stochastic and adaptive model of auditory nerve responses to cochlear implant stimulation
Margriet J. van Gendt, Jeroen J. Briaire, Randy K. Kalkman, Johan H. M. Frijns
P160 Quantitative comparison of graph theoretical measures of simulated and empirical functional brain networks
Won Hee Lee, Sophia Frangou
P161 Determining discriminative properties of fMRI signals in schizophrenia using highly comparative time-series analysis
Ben D. Fulcher, Patricia H. P. Tran, Alex Fornito
P162 Emergence of narrowband LFP oscillations from completely asynchronous activity during seizures and high-frequency oscillations
Stephen V. Gliske, William C. Stacey, Eugene Lim, Katherine A. Holman, Christian G. Fink
P163 Neuronal diversity in structure and function: cross-validation of anatomical and physiological classification of retinal ganglion cells in the mouse
Jinseop S. Kim, Shang Mu, Kevin L. Briggman, H. Sebastian Seung, the EyeWirers
P164 Analysis and modelling of transient firing rate changes in area MT in response to rapid stimulus feature changes
Detlef Wegener, Lisa Bohnenkamp, Udo A. Ernst
P165 Step-wise model fitting accounting for high-resolution spatial measurements: construction of a layer V pyramidal cell model with reduced morphology
Tuomo Mäki-Marttunen, Geir Halnes, Anna Devor, Christoph Metzner, Anders M. Dale, Ole A. Andreassen, Gaute T. Einevoll
P166 Contributions of schizophrenia-associated genes to neuron firing and cardiac pacemaking: a polygenic modeling approach
Tuomo Mäki-Marttunen, Glenn T. Lines, Andy Edwards, Aslak Tveito, Anders M. Dale, Gaute T. Einevoll, Ole A. Andreassen
P167 Local field potentials in a 4 × 4 mm2 multi-layered network model
Espen Hagen, Johanna Senk, Sacha J. van Albada, Markus Diesmann
P168 A spiking network model explains multi-scale properties of cortical dynamics
Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Claus-Christian Hilgetag, Markus Diesmann, Sacha Jennifer van Albada
P169 Using joint weight-delay spike-timing dependent plasticity to find polychronous neuronal groups
Haoqi Sun, Olga Sourina, Guang-Bin Huang, Felix Klanner, Cornelia Denk
P170 Tensor decomposition reveals RSNs in simulated resting state fMRI
Katharina Glomb, Adrián Ponce-Alvarez, Matthieu Gilson, Petra Ritter, Gustavo Deco
P171 Getting in the groove: testing a new model-based method for comparing task-evoked vs resting-state activity in fMRI data on music listening
Matthieu Gilson, Maria AG Witek, Eric F. Clarke, Mads Hansen, Mikkel Wallentin, Gustavo Deco, Morten L. Kringelbach, Peter Vuust
P172 STochastic engine for pathway simulation (STEPS) on massively parallel processors
Guido Klingbeil, Erik De Schutter
P173 Toolkit support for complex parallel spatial stochastic reaction–diffusion simulation in STEPS
Weiliang Chen, Erik De Schutter
P174 Modeling the generation and propagation of Purkinje cell dendritic spikes caused by parallel fiber synaptic input
Yunliang Zang, Erik De Schutter
P175 Dendritic morphology determines how dendrites are organized into functional subunits
Sungho Hong, Akira Takashima, Erik De Schutter
P176 A model of Ca2+/calmodulin-dependent protein kinase II activity in long term depression at Purkinje cells
Criseida Zamora, Andrew R. Gallimore, Erik De Schutter
P177 Reward-modulated learning of population-encoded vectors for insect-like navigation in embodied agents
Dennis Goldschmidt, Poramate Manoonpong, Sakyasingha Dasgupta
P178 Data-driven neural models part II: connectivity patterns of human seizures
Philippa J. Karoly, Dean R. Freestone, Daniel Soundry, Levin Kuhlmann, Liam Paninski, Mark Cook
P179 Data-driven neural models part I: state and parameter estimation
Dean R. Freestone, Philippa J. Karoly, Daniel Soundry, Levin Kuhlmann, Mark Cook
P180 Spectral and spatial information processing in human auditory streaming
Jaejin Lee, Yonatan I. Fishman, Yale E. Cohen
P181 A tuning curve for the global effects of local perturbations in neural activity: Mapping the systems-level susceptibility of the brain
Leonardo L. Gollo, James A. Roberts, Luca Cocchi
P182 Diverse homeostatic responses to visual deprivation mediated by neural ensembles
Yann Sweeney, Claudia Clopath
P183 Opto-EEG: a novel method for investigating functional connectome in mouse brain based on optogenetics and high density electroencephalography
Soohyun Lee, Woo-Sung Jung, Jee Hyun Choi
P184 Biphasic responses of frontal gamma network to repetitive sleep deprivation during REM sleep
Bowon Kim, Youngsoo Kim, Eunjin Hwang, Jee Hyun Choi
P185 Brain-state correlate and cortical connectivity for frontal gamma oscillations in top-down fashion assessed by auditory steady-state response
Younginha Jung, Eunjin Hwang, Yoon-Kyu Song, Jee Hyun Choi
P186 Neural field model of localized orientation selective activation in V1
James Rankin, Frédéric Chavane
P187 An oscillatory network model of Head direction and Grid cells using locomotor inputs
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P188 A computational model of hippocampus inspired by the functional architecture of basal ganglia
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P189 A computational architecture to model the microanatomy of the striatum and its functional properties
Sabyasachi Shivkumar, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P190 A scalable cortico-basal ganglia model to understand the neural dynamics of targeted reaching
Vignesh Muralidharan, Alekhya Mandali, B. Pragathi Priyadharsini, Hima Mehta, V. Srinivasa Chakravarthy
P191 Emergence of radial orientation selectivity from synaptic plasticity
Catherine E. Davey, David B. Grayden, Anthony N. Burkitt
P192 How do hidden units shape effective connections between neurons?
Braden A. W. Brinkman, Tyler Kekona, Fred Rieke, Eric Shea-Brown, Michael Buice
P193 Characterization of neural firing in the presence of astrocyte-synapse signaling
Maurizio De Pittà, Hugues Berry, Nicolas Brunel
P194 Metastability of spatiotemporal patterns in a large-scale network model of brain dynamics
James A. Roberts, Leonardo L. Gollo, Michael Breakspear
P195 Comparison of three methods to quantify detection and discrimination capacity estimated from neural population recordings
Gary Marsat, Jordan Drew, Phillip D. Chapman, Kevin C. Daly, Samual P. Bradley
P196 Quantifying the constraints for independent evoked and spontaneous NMDA receptor mediated synaptic transmission at individual synapses
Sat Byul Seo, Jianzhong Su, Ege T. Kavalali, Justin Blackwell
P199 Gamma oscillation via adaptive exponential integrate-and-fire neurons
LieJune Shiau, Laure Buhry, Kanishka Basnayake
P200 Visual face representations during memory retrieval compared to perception
Sue-Hyun Lee, Brandon A. Levy, Chris I. Baker
P201 Top-down modulation of sequential activity within packets modeled using avalanche dynamics
Timothée Leleu, Kazuyuki Aihara
Q28 An auto-encoder network realizes sparse features under the influence of desynchronized vascular dynamics
Ryan T. Philips, Karishma Chhabria, V. Srinivasa Chakravarthy
doi:10.1186/s12868-016-0283-6
PMCID: PMC5001212  PMID: 27534393
2.  Memory recall and spike-frequency adaptation 
Physical review. E  2016;93(5-1):052307.
The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.
doi:10.1103/PhysRevE.93.052307
PMCID: PMC4911895  PMID: 27300910
3.  Synchronization properties of heterogeneous neuronal networks with mixed excitability type 
We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily “hijack” neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.
doi:10.1103/PhysRevE.91.032813
PMCID: PMC4899572  PMID: 25871163
4.  Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity 
The European journal of neuroscience  2016;43(10):1321-1339.
The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states.
doi:10.1111/ejn.13210
PMCID: PMC4894964  PMID: 26869313
acetylcholine; computational modelling; M current; network synchrony; phase response curve
5.  Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks 
The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics compared to those in networks of Type I or Type II neurons. To understand these results, we compute neuronal PRCs calculated with a perturbation matching the profile of the synaptic current in our networks. Differences in profiles of these PRCs across the different neuron types reveal mechanisms underlying the divergent network dynamics.
doi:10.3389/fncir.2016.00082
PMCID: PMC5071331  PMID: 27812323
inhibitory networks; interneurons; phase response curve; computational model; clustering; synchrony; M-current; spike-frequency adaptation
8.  Network heterogeneity and seizure generation 
BMC Neuroscience  2015;16(Suppl 1):P302.
doi:10.1186/1471-2202-16-S1-P302
PMCID: PMC4699122
9.  Formation and Dynamics of Waves in a Cortical Model of Cholinergic Modulation 
PLoS Computational Biology  2015;11(8):e1004449.
Acetylcholine (ACh) is a regulator of neural excitability and one of the neurochemical substrates of sleep. Amongst the cellular effects induced by cholinergic modulation are a reduction in spike-frequency adaptation (SFA) and a shift in the phase response curve (PRC). We demonstrate in a biophysical model how changes in neural excitability and network structure interact to create three distinct functional regimes: localized asynchronous, traveling asynchronous, and traveling synchronous. Our results qualitatively match those observed experimentally. Cortical activity during slow wave sleep (SWS) differs from that during REM sleep or waking states. During SWS there are traveling patterns of activity in the cortex; in other states stationary patterns occur. Our model is a network composed of Hodgkin-Huxley type neurons with a M-current regulated by ACh. Regulation of ACh level can account for dynamical changes between functional regimes. Reduction of the magnitude of this current recreates the reduction in SFA the shift from a type 2 to a type 1 PRC observed in the presence of ACh. When SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are localized and easily pinned by network inhomogeneities. When SFA is present (decreasing ACh), traveling waves of activity naturally arise. A further decrease in ACh leads to a high degree of synchrony within traveling waves. We also show that the level of ACh determines how sensitive network activity is to synaptic heterogeneity. These regimes may have a profound functional significance as stationary patterns may play a role in the proper encoding of external input as memory and traveling waves could lead to synaptic regularization, giving unique insights into the role and significance of ACh in determining patterns of cortical activity and functional differences arising from the patterns.
Author Summary
Within the brain, networks of neurons with relatively stable anatomical connections will rapidly shift patterns of neural activation when exposed to changing chemical environments. A classic example of this is the transition from high frequency to low frequency electrical patterns as animals move from waking to slow wave sleep. The neurotransmitters responsible for these transitions act through changes in neural excitability and their effect on network patterns arises through an interaction of stable network features and dynamic neural properties. In this paper we study how network features, namely excitatory/ inhibitory balance, and dynamic neural properties, the presence or absence of spike-frequency adaptation, shape large-scale patterns in network activity. We focus on the neuromodulator largely responsible for the transition between waking and slow-wave sleep, acetylcholine. We show that inhibition and SFA work together to set the speed of activity propagation through a network by altering the spatial (inhibition) and temporal (SFA) extent of neural activity. By scanning these parameters a variety of dynamical regimes can be created.
doi:10.1371/journal.pcbi.1004449
PMCID: PMC4546669  PMID: 26295587
10.  Measuring Predictability of Autonomous Network Transitions into Bursting Dynamics 
PLoS ONE  2015;10(4):e0122225.
Understanding spontaneous transitions between dynamical modes in a network is of significant importance. These transitions may separate pathological and normal functions of the brain. In this paper, we develop a set of measures that, based on spatio-temporal features of network activity, predict autonomous network transitions from asynchronous to synchronous dynamics under various conditions. These metrics quantify spike-timing distributions within a narrow time window as a function of the relative location of the active neurons. We applied these metrics to investigate the properties of these transitions in excitatory-only and excitatory-and-inhibitory networks and elucidate how network topology, noise level, and cellular heterogeneity affect both the reliability and the timeliness of the predictions. The developed measures can be calculated in real time and therefore potentially applied in clinical situations.
doi:10.1371/journal.pone.0122225
PMCID: PMC4391948  PMID: 25855975
13.  Competition and cooperation between active intra-network and passive extra-network transport processes 
Scientific Reports  2014;4:5269.
Many networks are embedded in physical space and often interact with it. This interaction can be exemplified through constraints exerted on network topology, or through interactions of processes defined on a network with those that are linked to the space that the network is embedded within, leading to complex dynamics. Here we discuss an example of such an interaction in which a signaling agent is actively transported through the network edges and, at the same time, spreads passively through space due to diffusion. We show that these two processes cooperate or compete depending on the network topology leading to complex dynamics.
doi:10.1038/srep05269
PMCID: PMC4053701  PMID: 24920178
14.  CA1 hippocampal network activity changes during sleep-dependent memory consolidation 
A period of sleep over the first few hours following single-trial contextual fear conditioning (CFC) is essential for hippocampally-mediated memory consolidation. Recent studies have uncovered intracellular mechanisms required for memory formation which are affected by post-conditioning sleep and sleep deprivation. However, almost nothing is known about the circuit-level activity changes during sleep that underlie activation of these intracellular pathways. Here we continuously recorded from the CA1 region of freely-behaving mice to characterize neuronal and network activity changes occurring during active memory consolidation. C57BL/6J mice were implanted with custom stereotrode recording arrays to monitor activity of individual CA1 neurons, local field potentials (LFPs), and electromyographic activity. Sleep architecture and state-specific CA1 activity patterns were assessed during a 24 h baseline recording period, and for 24 h following either single-trial CFC or Sham conditioning. We find that consolidation of CFC is not associated with significant sleep architecture changes, but is accompanied by long-lasting increases in CA1 neuronal firing, as well as increases in delta, theta, and gamma-frequency CA1 LFP activity. These changes occurred in both sleep and wakefulness, and may drive synaptic plasticity within the hippocampus during memory formation. We also find that functional connectivity within the CA1 network, assessed through functional clustering algorithm (FCA) analysis of spike timing relationships among recorded neurons, becomes more stable during consolidation of CFC. This increase in network stability was not present following Sham conditioning, was most evident during post-CFC slow wave sleep (SWS), and was negligible during post-CFC wakefulness. Thus in the interval between encoding and recall, SWS may stabilize the hippocampal contextual fear memory (CFM) trace by promoting CA1 network stability.
doi:10.3389/fnsys.2014.00061
PMCID: PMC4029013  PMID: 24860440
synaptic plasticity; fear memory; neural network; consolidation; hippocampus; extracellular recording; slow wave sleep; REM sleep
16.  Neuronal signatures of network transition into bursting 
BMC Neuroscience  2013;14(Suppl 1):P432.
doi:10.1186/1471-2202-14-S1-P432
PMCID: PMC3704798
17.  Dynamics of two-process astrocyte networks 
BMC Neuroscience  2013;14(Suppl 1):P433.
doi:10.1186/1471-2202-14-S1-P433
PMCID: PMC3704846
19.  A Dynamical Role for Acetylcholine in Synaptic Renormalization 
PLoS Computational Biology  2013;9(3):e1002939.
Although sleep is a fundamental behavior observed in virtually all animal species, its functions remain unclear. One leading proposal, known as the synaptic renormalization hypothesis, suggests that sleep is necessary to counteract a global strengthening of synapses that occurs during wakefulness. Evidence for sleep-dependent synaptic downscaling (or synaptic renormalization) has been observed experimentally, but the physiological mechanisms which generate this phenomenon are unknown. In this study, we propose that changes in neuronal membrane excitability induced by acetylcholine may provide a dynamical mechanism for both wake-dependent synaptic upscaling and sleep-dependent downscaling. We show in silico that cholinergically-induced changes in network firing patterns alter overall network synaptic potentiation when synaptic strengths evolve through spike-timing dependent plasticity mechanisms. Specifically, network synaptic potentiation increases dramatically with high cholinergic concentration and decreases dramatically with low levels of acetylcholine. We demonstrate that this phenomenon is robust across variation of many different network parameters.
Author Summary
The function of sleep is one of the greatest mysteries in contemporary neuroscience. Nearly every species of animal requires it, yet we do not know why. One idea, known as the synaptic renormalization hypothesis, suggests that waking results in a global increase in the strengths of connections in the brain, a phenomenon which is unsustainable because stronger connections consume more energy and take up more space. The function of sleep, according to this hypothesis, is to downscale or “renormalize” connection strengths. While mounting experimental evidence confirms that sleep-dependent synaptic downscaling does occur, we still do not know what biophysical mechanism causes it. In this paper, we show computational results which indicate that the neuromodulator acetylcholine may have a key role to play in sleep-dependent synaptic downscaling. If confirmed experimentally, these findings will help to unravel the mystery of sleep.
doi:10.1371/journal.pcbi.1002939
PMCID: PMC3597526  PMID: 23516342
21.  Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency 
PLoS Computational Biology  2011;7(5):e1002062.
Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.
Author Summary
Synchronization of the firing of neurons in the brain is related to many cognitive functions, such as recognizing faces, discriminating odors, and coordinating movement. It is therefore important to understand what properties of neuronal networks promote synchrony of neural firing. One measure that is often used to determine the contribution of individual neurons to network synchrony is called the phase response curve (PRC). PRCs describe how the timing of neuronal firing changes depending on when input, such as a synaptic signal, is received by the neuron. A characteristic of PRCs that has previously not been well understood is that they change dramatically as the neuron's firing frequency is modulated. This effect carries potential significance, since cognitive functions are often associated with specific frequencies of network activity in the brain. We showed computationally that the frequency dependence of PRCs can be explained by the relative timing of ionic membrane currents with respect to the time between spike firings. Our simulations also showed that the frequency dependence of neuronal PRCs leads to frequency-dependent changes in network synchronization that can be different for different neuron types. These results further our understanding of how synchronization is generated in the brain to support various cognitive functions.
doi:10.1371/journal.pcbi.1002062
PMCID: PMC3098201  PMID: 21625571
22.  The Resonance Frequency Shift, Pattern Formation, and Dynamical Network Reorganization via Sub-Threshold Input 
PLoS ONE  2011;6(4):e18983.
We describe a novel mechanism that mediates the rapid and selective pattern formation of neuronal network activity in response to changing correlations of sub-threshold level input. The mechanism is based on the classical resonance and experimentally observed phenomena that the resonance frequency of a neuron shifts as a function of membrane depolarization. As the neurons receive varying sub-threshold input, their natural frequency is shifted in and out of its resonance range. In response, the neuron fires a sequence of action potentials, corresponding to the specific values of signal currents, in a highly organized manner. We show that this mechanism provides for the selective activation and phase locking of the cells in the network, underlying input-correlated spatio-temporal pattern formation, and could be the basis for reliable spike-timing dependent plasticity. We compare the selectivity and efficiency of this pattern formation to a supra-threshold network activation and a non-resonating network/neuron model to demonstrate that the resonance mechanism is the most effective. Finally we show that this process might be the basis of the phase precession phenomenon observed during firing of hippocampal place cells, and that it may underlie the active switching of neuronal networks to locking at various frequencies.
doi:10.1371/journal.pone.0018983
PMCID: PMC3079761  PMID: 21526162
23.  Network effects of frequency dependent phase response curves 
BMC Neuroscience  2010;11(Suppl 1):P40.
doi:10.1186/1471-2202-11-S1-P40
PMCID: PMC3090927
24.  Local dynamics of gap-junction-coupled interneuron networks 
Physical biology  2010;7:16015.
Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.
doi:10.1088/1478-3975/7/1/016015
PMCID: PMC2896010  PMID: 20228446
25.  From network heterogeneities to familiarity detection and hippocampal memory management 
Hippocampal-neocortical interactions are key to the rapid formation of novel associative memories in the hippocampus and consolidation to long term storage sites in the neocortex. We investigated the role of network correlates during information processing in hippocampal-cortical networks. We found that changes in the intrinsic network dynamics due to the formation of structural network heterogeneities alone act as a dynamical and regulatory mechanism for stimulus novelty and familiarity detection, thereby controlling memory management in the context of memory consolidation. This network dynamic, coupled with an anatomically established feedback between the hippocampus and the neocortex, recovered heretofore unexplained properties of neural activity patterns during memory management tasks which we observed during sleep in multiunit recordings from behaving animals. Our simple dynamical mechanism shows an experimentally matched progressive shift of memory activation from the hippocampus to the neocortex and thus provides the means to achieve an autonomous off-line progression of memory consolidation.
doi:10.1103/PhysRevE.78.041905
PMCID: PMC2740976  PMID: 18999453

Results 1-25 (27)