PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Proteomics of Protein Secretion by Aggregatibacter actinomycetemcomitans 
PLoS ONE  2012;7(7):e41662.
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
doi:10.1371/journal.pone.0041662
PMCID: PMC3405016  PMID: 22848560
2.  Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms 
BMC Microbiology  2011;11:14.
Background
The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella.
Results
As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers.
Conclusions
Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of them detect non-oral species and phylogenetic groups of importance in a variety of medical conditions and the food industry.
doi:10.1186/1471-2180-11-14
PMCID: PMC3032641  PMID: 21247450
3.  Oral Biofilm Architecture on Natural Teeth 
PLoS ONE  2010;5(2):e9321.
Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.
doi:10.1371/journal.pone.0009321
PMCID: PMC2827546  PMID: 20195365
4.  Denaturing Gradient Gel Electrophoresis as a Diagnostic Tool in Periodontal Microbiology 
Journal of Clinical Microbiology  2006;44(10):3628-3633.
Bacteria play an important role in the initiation and progression of periodontal diseases and are part of a biofilm, which can contain over 100 different species. The aim of the present study was to show the potential of denaturing gradient gel electrophoresis (DGGE) as a tool for the detection of clinically relevant species and to compare the results of detection by DGGE with those by PCR and culturing. Hybridization of the bands from the DGGE profiles with species-specific probes was developed to confirm the band positions in the marker obtained with reference strains. The sensitivities of DGGE compared to those of cultivation for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythensis were 100, 100, 88, and 100%, respectively; and the sensitivities of DGGE compared to those of PCR were 100, 90, 88, and 96%, respectively. DGGE as a diagnostic tool could easily be extended to other species, as shown for Treponema denticola, which could be detected in 48% of the samples. Three different groups of A. actinomycetemcomitans serotypes could be distinguished by DGGE (i.e., a group comprising serotypes a, d, e, and f; a group comprising serotype b; and a group comprising serotype c). Amplicons from P. gingivalis and T. denticola migrated to the same position in the gel, and P. intermedia produced multiple bands. In the present study we show that the DGGE profiles represent clinically relevant species which can be detected by hybridization with species-specific probes. With DGGE, large numbers of samples can be analyzed for different species simultaneously, and DGGE may be a good alternative in periodontal microbial diagnostics.
doi:10.1128/JCM.00122-06
PMCID: PMC1594801  PMID: 17021091

Results 1-4 (4)