Search tips
Search criteria

Results 1-25 (252)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  The Novel Analogue of Hirsutine as an Anti-Hypertension and Vasodilatary Agent Both In Vitro and In Vivo 
PLoS ONE  2015;10(4):e0119477.
In this paper, an analogue of hirsutine (compound 1) has been synthesized and evaluated as an anti-hypertension agent, which exhibits extraordinary effects on the contractile response of thoracic aorta rings from male SD rats in vitro (IC50 = 1.129×10-9±0.5025) and the abilities of reducing the systolic blood pressure (SBP) and heart rate (HR) of SHR in vivo. The mechanism investigation reveals that the vasodilatation induced by compound 1 is mediated by both endothelium-dependent and -independent manners. The relaxation in endothelium-intact aortic rings induced by compound 1 can be inhibited by L-NAME (1×10-6 mol•L-1) and ODQ (1×10-6 mol•L-1). Moreover, compound 1 can also block Ca2+ influx through L-type Ca2+ channels and inhibit intracellular Ca2+ release while no effect on K+ channel has been observed. All these data demonstrated that the NO/cyclic GMP pathway can be involved in endothelium-dependent manner induced by compound 1. Meanwhile the mechanism on the vasodilatation of compound 1 probably also related to blockade of Ca2+ influx through L-type Ca2+ channels and inhibition of intracellular Ca2+ release may have no relationship with K+ channels.
PMCID: PMC4409389  PMID: 25909998
2.  Hydrogen Sulfide Targets EGFR Cys797/Cys798 Residues to Induce Na+/K+-ATPase Endocytosis and Inhibition in Renal Tubular Epithelial Cells and Increase Sodium Excretion in Chronic Salt-Loaded Rats 
Antioxidants & Redox Signaling  2014;21(15):2061-2082.
Aims: The role of hydrogen sulfide (H2S) in renal sodium and water homeostasis is unknown. We investigated whether H2S promoted Na+/K+-ATPase endocytosis via the H2S/EGFR/gab1/PI3K/Akt pathway in renal tubular epithelial cells. Results: H2S decreased Na+/K+-ATPase activity and induced its endocytosis in renal tubular epithelial cells, which was abrogated by small interfering RNA (siRNA) knockdown of epidermal growth factor receptor (EGFR) and gab1, a dominant-negative mutant of Akt and PI3K inhibitors. H2S increased EGFR, gab1, PI3K, and Akt phosphorylation in both renal tubular epithelial cells and kidneys of chronic salt-loaded rats. These increases were abrogated by siRNA knockdown of EGFR, but not of c-Src. Radiolabeled H2S exhibited transient, direct binding to EGFR and directly activated EGFR. Some disulfide bonds in EGFR intracellular kinase domain were susceptible to H2S-induced cleavage. Mutations of EGFR Cys797 (human) or Cys798 (rat) residues increased EGFR activity and prevented H2S-induced Na+/K+-ATPase endocytosis. H2S also inhibited sodium hydrogen exchanger-3 (NHE3) activity in renal tubular epithelial cells. H2S treatment increased sodium excretion in chronic and acute salt-loaded rats and decreased blood pressure in chronic salt-loaded rats. Innovation and Conclusion: H2S directly targets some disulfide bonds in EGFR, which activates the EGFR/gab1/PI3K/Akt pathway and subsequent Na+/K+-ATPase endocytosis and inhibition in renal tubular epithelial cells. EGFR Cys797/Cys798 residues are essential for an intrinsic inhibitory mechanism and for H2S actions in renal tubular epithelial cells. Other pathways, including NHE3, may be involved in mediating the renal effects of H2S. Our results reveal a new renal sodium homeostasis mechanism, which may provide for novel treatment approaches for diseases related to renal sodium homeostasis dysfunction. Antioxid. Redox Signal. 21, 2061–2082.
PMCID: PMC4215382  PMID: 24684506
3.  VEGFR2 Functions As an H2S-Targeting Receptor Protein Kinase with Its Novel Cys1045–Cys1024 Disulfide Bond Serving As a Specific Molecular Switch for Hydrogen Sulfide Actions in Vascular Endothelial Cells 
Antioxidants & Redox Signaling  2013;19(5):448-464.
Aims: The potential receptor for hydrogen sulfide (H2S) remains unknown. Results: H2S could directly activate vascular endothelial growth factor receptor 2 (VEGFR2) and that a small interfering RNA (siRNA)-mediated knockdown of VEGFR2 inhibited H2S-induced migration of human vascular endothelial cells. H2S promoted angiogenesis in Matrigel plug assay in mice and this effect was attenuated by a VEGF receptor inhibitor. Using tandem mass spectrometry (MS), we identified a new disulfide complex located between Cys1045 and Cys1024 within VEGFR2 that was labile to H2S-mediated modification. Kinase activity of the mutant VEGFR2 (C1045A) devoid of the Cys1045–Cys1024 disulfide bond was significantly higher than wild-type VEGFR2. Transfection with vectors expressing VEGFR2 (C1045A) caused a significant increase in cell migration, while the migration-promoting effect of H2S disappeared in the cells transfected with VEGFR2 (C1045A). Therefore, the Cys1045–Cys1024 disulfide bond serves as an intrinsic inhibitory motif and functions as a molecular switch for H2S. The formation of the Cys1045–Cys1024 disulfide bond disrupted the integrity of the active conformation of VEGFR2. Breaking the Cys1045–Cys1024 disulfide bond recovered the active conformation of VEGFR2. This motif was prone to a nucleophilic attack by H2S via an interaction of their frontier molecular orbitals. siRNA-mediated knockdown of cystathionine γ-lyase attenuated migration of vascular endothelial cells induced by VEGF or moderate hypoxia. Innovation and Conclusion: The study provides the first piece of evidence of a molecular switch in H2S-targeting receptor protein kinase in H2S-induced angiogenesis and that may be applicable to additional kinases containing functionally important disulfide bonds in mediating various H2S actions. Antioxid. Redox Signal. 19, 448–464.
PMCID: PMC3704125  PMID: 23199280
4.  The role of urotensin II in cardiovascular and renal physiology and diseases 
British Journal of Pharmacology  2006;148(7):884-901.
Urotensin II (U-II) is a cyclic neuropeptide that was first isolated from teleost fish some 35 years ago. Mammalian U-II is a powerful vasoconstrictor with a potency greater than that of endothelin-1.Nevertheless, unlike endothelin-1, which constricts all or nearly all vascular beds, the vasoactive effects of U-II are reported to be dependent both on the species and on the regional vascular bed examined. Typical regional variability occurs in the rat in which vasoconstriction to U-II is most robust in thoracic aorta proximal to the aortic arch and decreases gradually towards the distal peripheral arteries. As small peripheral arteries but not larger arteries such as the aorta play a major role in regulating peripheral resistance and consequent blood pressure as well as workload on the heart, doubts have been raised concerning the importance of this peptide in cardiovascular physiology. Moreover, an interaction between U-II and other endogenous vasoactive molecules may add a level of complexity to the vascular actions of U-II.On the other hand, recent experimental and clinical studies have revealed increased expression of U-II and urotensin receptor (UT receptor) in animals with experimentally induced myocardial infarction, heart failure, and in patients with hypertension, atherosclerosis, and diabetic nephropathy, which suggests a potential role for U-II in both cardiovascular and renal diseases. A series of peptidic and nonpeptidic UT receptor ligands have been shown to be effective in antagonizing the effects of U-II in the cardiorenal system.This article aims to review recent advances in our understanding of the physiology and pathophysiology of U-II with particular references to its role in cardiovascular health and disease.
PMCID: PMC1751922  PMID: 16783414
Urotensin II; urotensin receptor; vasoactive effects; signalling mechanisms; interaction
5.  MicroRNA-195-5p, a new regulator of Fra-1, suppresses the migration and invasion of prostate cancer cells 
An increasing number of studies have demonstrated that deregulation of microRNAs (miRNAs) was a common event in tumor tissues and miRNAs would be treated as ideal tumor biomarkers or therapeutic targets. miR-195-5p (termed as miR-195 for briefly in the following part) was suggested to function as a tumor suppressor in cancer development and progression. However, the roles of miR-195 in human prostate cancer are still elusive. Thus, this study was performed to investigate the biological functions and its molecular mechanisms of miR-195 in human prostate cancer cell lines, discussing whether it has a potential to be a therapeutic way of prostate cancer.
Two human prostate cancer cell lines were analyzed for the expression of miR-195 by quantitative real-time reverse transcription–polymerase chain reaction (RT–PCR). A gain-of-function study of miR-195 was conducted by transfecting mimics into DU145 and PC3 cells and cell motility and invasion ability were evaluated by wound healing assay and transwell assay. Tissue microarray, and immunohistochemistry with antibodies against Fra-1 was performed using the peroxidase and DAB methods. The target gene of miR-195 was determined by luciferase assay, quantitative RT–PCR and western blot. The regulation of motility by miR-195 was analyzed by western blot.
miR-195 was frequently down-regulated in both prostate cancer cell lines, DU145 and PC3. Overexpression of miR-195 significantly repressed the capability of migration and invasion of prostate cancer cells. In addition, we identified Fra-1, a cell motility regulator, as a novel target of miR-195. Fra-1 was up-regulated in prostate cancer tissues. We also observed that inhibition of miR-195 or restoration of Fra-1 in miR-195-over-expressed prostate cancer cells partially reversed the suppressive effects of miR-195. Furthermore, we demonstrated miR-195 could inhibit prostate cancer cell motility by regulated the expression of c-Met, MMP1, MMP9.
miR-195 can repress the migration and invasion of prostate cancer cells via regulating Fra-1. Our results indicate that miR-195 could be a tumor suppressor and may have a potential to be a diagnostics or therapeutic target in prostate cancer.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0650-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4558968  PMID: 26337460
miR-195; Fra-1; Prostate cancer; Migration; Invasion
6.  Insulin Inhibits Cardiac Contractility by Inducing a Gi-Biased β2-Adrenergic Signaling in Hearts 
Diabetes  2014;63(8):2676-2689.
Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states.
PMCID: PMC4113065  PMID: 24677713
7.  The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs 
Aging Cell  2015;14(4):644-658.
The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1−/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1−/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
PMCID: PMC4531078  PMID: 25754370
dasatinib; dependence receptors; ephrins; p21; PI3K delta; plasminogen-activated inhibitor; quercetin
8.  SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice 
SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson’s disease and Alzheimer’s disease (AD). In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1) double-transgenic mice without affecting amyloid-β (Aβ) burden. In addition, decreases in cAMP-response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA) inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future.
PMCID: PMC4581259  PMID: 26262618
SCM-198; amyloid-β; Alzheimer’s disease; Morris water maze; novel object recognition; cAMP-responsive element-binding protein; brain-derived neurotrophic factor; tropomyosin-related kinase B
9.  Temporal Genetic Dynamics of an Invasive Species, Frankliniella occidentalis (Pergande), in an Early Phase of Establishment 
Scientific Reports  2015;5:11877.
Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range.
PMCID: PMC4490395  PMID: 26138760
10.  GLUT1 Deficiency in Cardiomyocytes Does not Accelerate the Transition from Compensated Hypertrophy to Heart Failure 
To determine whether endogenous GLUT1 induction and the increased glucose utilization that accompanies pressure overload hypertrophy (POH) are required to maintain cardiac function during hemodynamic stress, and to test the hypothesis that lack of GLUT1 will accelerate the transition to heart failure.
Methods and Results
To determine the contribution of endogenous GLUT1 to the cardiac adaptation to POH, male mice with cardiomyocyte-restricted deletion of the GLUT1 gene (G1KO) and their littermate controls (Cont) were subjected to transverse aortic constriction (TAC). GLUT1 deficiency reduced glycolysis and glucose oxidation by 50%, which was associated with a reciprocal increase in fatty acid oxidation (FAO) relative to controls. Four weeks after TAC, glycolysis increased and FAO decreased by 50% in controls, but were unchanged in G1KO hearts relative to shams. G1KO and controls exhibited equivalent degrees of cardiac hypertrophy, fibrosis, and capillary density loss after TAC. Following TAC, in vivo left ventricular developed pressure was reduced in G1KO hearts relative to controls, but +dP/dt was equivalently reduced in Cont and G1KO mice following TAC. Mitochondrial function was equivalently impaired following TAC in both Cont and G1KO hearts.
GLUT1 deficiency in cardiomyocytes alters myocardial substrate utilization, but does not substantially exacerbate pressure-overload induced contractile dysfunction or accelerate the progression to heart failure.
PMCID: PMC4037364  PMID: 24583251
Cardiac hypertrophy; glucose transport and cardiac metabolism
11.  Pleuroparenchymal fibroelastosis associated with aluminosilicate dust: a case report 
Idiopathic pleuroparenchymal fibroelastosis (IPPFE) is a recently described rare condition, characterized by pleural and subpleural parenchymal fibrosis, predominantly in the upper lobes. The clinical course of this disease is progressive and prognosis is poor, with little information regarding the etiology of IIPPFE. This report describes an IPPFE patient with convincing evidence of inhalational dust and suggests that dust exposure should be considered as a new causative factor of IPPFE.
PMCID: PMC4555784  PMID: 26339456
Pleuroparenchymal fibroelastosis; idiopathic interstitial pneumonias; dust exposure
12.  Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface 
Scientific Reports  2015;5:10966.
Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.
PMCID: PMC4468515  PMID: 26077772
13.  Protective effect of the ω-3 polyunsaturated fatty acids on the schistosomiasis liver fibrosis in mice 
This study aims to observe the effect of ω-3 polyunsaturated fatty acids on initiation and elimination of the schistosomiasis inflammatory response and liver fibrosis. The mice infected with the cercariae of Schistosoma japonicum (20 ± cercarie per mice) were separated randomly into several groups. After 60 days, liver tissue samples of all mice were sectioned. Hematoxylin-eosin (HE) staining, Masson staining, the enzyme-linked immunosorbent assay (ELISA), and flow cytometry (FCM) were performed. Through HE and Masson staining, the size of egg (ovum) granuloma and the collagen deposited in mice’s livers in ω-3 PUFAs and praziquantel mixed groups were less than that of model group and praziquantel treated group. The serum level of IL-13 and TNF-α were lower than that of model group and praziquantel treated group. The indicators of liver fibrosis, such as HA and LN in the group treated with ω-3 PUFAs and praziquantel before the release of soluble eggs antigen (SEA) into blood, were lower than that of model group and praziquantel treated group, respectively. The combined treatment of ω-3 polyunsaturated fatty acids and praziquantel conducted before the release of soluble eggs antigens into the blood decreases liver ovum granulomatous inflammation and fibrosis degree in the schistosomiasis. The mechanism of the ω-3 polyunsaturated fatty acid may be related to the adjustment of the anti-inflammatory and immune responses.
PMCID: PMC4537995  PMID: 26309610
Schistosoma japonicum; liver fibrosis; ω-3 polyunsaturated fatty acids; protective effect
14.  Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study 
American Journal of Cancer Research  2015;5(7):2202-2211.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy.
PMCID: PMC4548331  PMID: 26328250
Lung adenocarcinoma; TKI-resistance; valproic acid; signaling pathways; reversion
15.  GJB2 Mutation Spectrum and Genotype-Phenotype Correlation in 1067 Han Chinese Subjects with Non-Syndromic Hearing Loss 
PLoS ONE  2015;10(6):e0128691.
Mutations in Gap Junction Beta 2 (GJB2) have been reported to be a major cause of non-syndromic hearing loss in many populations worldwide. The spectrums and frequencies of GJB2 variants vary substantially among different ethnic groups, and the genotypes among these populations remain poorly understood. In the present study, we carried out a systematic and extended mutational screening of GJB2 gene in 1067 Han Chinese subjects with non-syndromic hearing loss, and the resultant GJB2 variants were evaluated by phylogenetic, structural and bioinformatic analysis. A total of 25 (23 known and 2 novel) GJB2 variants were identified, including 6 frameshift mutations, 1 nonsense mutation, 16 missense mutations and 2 silent mutations. In this cohort, c.235delC is the most frequently observed pathogenic mutation. The phylogenetic, structural and bioinformatic analysis showed that 2 novel variants c.127G>T (p.V43L), c.293G>C (p.R98P) and 2 known variants c. 107T>C (p.L36P) and c.187G>T (p.V63L) are localized at highly conserved amino acids. In addition, these 4 mutations are absent in 203 healthy individuals, therefore, they are probably the most likely candidate pathogenic mutations. In addition, 66 (24 novel and 42 known) genotypes were identified, including 6 homozygotes, 20 compound heterozygotes, 18 single heterozygotes, 21 genotypes harboring only polymorphism(s) and the wild type genotype. Among these, 153 (14.34%) subjects were homozygous for pathogenic mutations, 63 (5.91%) were compound heterozygotes, and 157 (14.71%) carried single heterozygous mutation. Furthermore, 65.28% (141/216) of these cases with two pathogenic mutations exhibited profound hearing loss. These data suggested that mutations in GJB2 gene are responsible for approximately 34.96% of non-syndromic hearing loss in Han Chinese population from Zhejiang Province in eastern China. In addition, our results also strongly supported the idea that other factors such as alterations in regulatory regions, additional genes, and environmental factors may contribute to the clinical manifestation of deafness.
PMCID: PMC4456361  PMID: 26043044
16.  Impact of preoperative 5α-reductase inhibitors on perioperative blood loss in patients with benign prostatic hyperplasia: a meta-analysis of randomized controlled trials 
BMC Urology  2015;15:47.
The ability of 5α-reductase inhibitors (5ARIs) to decrease blood loss during transurethral resection of the prostate (TURP) for benign prostatic hyperplasia (BPH) remains controversial. We aimed to conduct a meta-analysis of all randomized controlled trials (RCTs) to establish the role of 5ARI use prior to TURP.
We searched studies from the electronic databases PubMed, Embase, Scopus, and Cochrane Library from inception to March 25, 2014. Meta-analysis was performed using the statistical software Review Manager version 5.1.
Seventeen RCTs including 1489 patients were examined. We observed that preoperative treatment with finasteride can decrease total blood loss, blood loss per gram of resected prostate tissue, hemoglobin level alteration, microvessel density (MVD), and vascular endothelial growth factor level. Neither finasteride nor dutasteride reduced operative time, prostate volume, or the weight of gland resected. In contrast, pretreatment with dutasteride before TURP did not decrease the total blood loss or MVD.
Pretreatment with finasteride does seem to reduce perioperative blood loss related to TURP for BPH patients. However, the effect of preoperative dutasteride was inconclusive. Further studies are required to strengthen future recommendations regarding the use of 5ARI as a standard pre-TURP treatment and its optimal regimen.
PMCID: PMC4450838  PMID: 26032962
5α-reductase inhibitor; Benign prostate hyperplasia; Hemorrhage; Meta-analysis
17.  Surgical Versus Non-Surgical Treatment for Vertebral Compression Fracture with Osteopenia: A Systematic Review and Meta-Analysis 
PLoS ONE  2015;10(5):e0127145.
Surgical and non-surgical interventions are the two categories for treatment of vertebral compression fractures (VCFs). However, there is clinical uncertainty over optimal management. This study aimed to examine the safety and effectiveness of surgical management for treatment of VCFs with osteopenia compared with non-surgical treatment.
We conducted a systematic search through electronic databases from inception to June 2014, with no limits on study data or language. Randomized controlled trials (RCTs) evaluating surgical versus non-surgical interventions for treatment of patients with VCFs due to osteopenia were considered. Primary outcomes were pain and adverse effects. A random-effects model was used to calculate the pooled mean difference (MD) or risk ratios with 95% confidence interval (CI).
Sixteen reports (11 studies) met the inclusion criteria, and provided data for the meta-analysis with a total of 1,401 participants. Compared with conservative treatment, surgical treatment was more effective in reducing pain (short-term: MD -2.05, 95% CI -3.55 to -0.56, P=0.007; mid-term: MD -1.70, 95% CI -2.78 to -0.62, P=0.002; long-term: MD -1.24, 95% CI -2.20 to -0.29, P=0.01) and disability on the Roland–Morris Disability score (short-term: MD -4.97, 95% CI -8.71 to -1.23, P=0.009), as well as improving quality of life on the Short-Form 36 Physical Component Summary score (short-term: MD 5.53, 95% CI 1.45 to 9.61, P=0.008) and the Quality of Life Questionnaire of the European Foundation for Osteoporosis score (short-term: MD -5.01, 95% CI -8.11 to -1.91, P=0.002). Indirect comparisons between vertebroplasty and kyphoplasty found no evidence that the treatment effect differed across the two interventions for any outcomes assessed. Compared with the sham procedure, surgical treatment showed no evidence of improvement in pain relief and physical function. Based on these two comparisons, no significant difference between groups was noted in the pooled results for adverse events.
Compared to conservative treatment, surgical treatment was more effective in decreasing pain in the short,mid and long terms. However, no significant mid- and long-term differences in physical function and quality of life was observed. Little good evidence is available for surgical treatment compared with that for sham procedure. PV and BK are currently used to treat VCFs with osteopenia, with little difference in treatment effects. Evidence of better quality and from a larger sample size is required before a recommendation can be made.
Systematic Review Registration PROSPERO registration number: CRD42013005142.
PMCID: PMC4447413  PMID: 26020950
18.  Primary hepatic angiosarcoma: A report of two cases and literature review 
Primary hepatic angiosarcoma (PHA) is a rare malignancy that carries a poor prognosis. Of 1500 patients who underwent hepatectomy for primary hepatic tumors between 1994 and 2013 at our center, two patients were pathologically diagnosed with PHA. Clinical characteristics, treatment modalities, and outcomes of the two patients were collected and analyzed. Both patients underwent hepatectomy and had a postoperative survival time of 8 and 16 mo, respectively. A search of PubMed yielded eight references reporting 35 cases of PHA published between 2004 and 2013. On the basis of the presented cases and review of the literature, we endorse complete surgical resection as the mainstay definitive treatment of PHA, with adjuvant postoperative chemotherapy potentially improving survival. Palliative chemotherapy is an option in advanced hepatic angiosarcoma.
PMCID: PMC4438048  PMID: 26019478
Diagnosis; Hemangiosarcoma; Therapy; Surgery; Liver
19.  Comprehensive family therapy: an effective approach for cognitive rehabilitation in schizophrenia 
Antipsychotic medication has limited abilities to improve the cognitive impairments that accompany schizophrenia. Adding psychosocial treatment may result in marked improvements in cognitive function, as compared to antipsychotic treatment alone. We hypothesized that a combination of individual and family interventions may be a useful cognitive rehabilitation paradigm for schizophrenia.
Materials and methods
An 18-month follow-up clinical trial of 256 stabilized patients with schizophrenia at six communities in Shanghai, People’s Republic of China were randomly assigned to into either a comprehensive family therapy (CFT) group or a usual daily care (UDC) group. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Positive and Negative Syndrome Scale (PANSS) were the primary outcome instruments for this study.
There was no significant difference between the CFT and UDC for all demographic characteristics at the baseline assessment. During the 18-month follow-up observation, changes in RBANS total score indicated that patients undergoing CFT showed greater improvement from baseline to the follow-up assessments in cognitive function than those in the UDC group (F=9.77, P=0.002). Post hoc analysis showed that the CFT group presented with significant differences in the RBANS total score, immediate memory, visuospatial skill, language, attention, and delayed memory sections compared with the UDC after 18 months of follow-up (all P<0.01).
Our findings suggest that CFT can be easily adapted and may prove to be an effective approach for improving cognitive function in patients with schizophrenia. Our program provides a potential paradigm for cognitive rehabilitation for schizophrenia patients in the community.
PMCID: PMC4446020  PMID: 26056456
cognitive function; comprehensive family therapy; schizophrenia
20.  Bone resorption during the first year after implantation of a single-segment dynamic interspinous stabilization device and its risk factors 
Dynamic interspinous stabilization devices generally provide satisfactory results, but can result in recurrent lumbar disc herniation, spinous process fracture, or bone resorption of the spinous process. The purpose of this study was to investigate if the Wallis dynamic stabilization device is associated with bone resorption.
Patients who underwent single-segment posterior lumbar decompression and implantation of a Wallis dynamic interspinous stabilization device at the L4/5 level between January 1, 2009 and October 1, 2011 were included. Bone resorption rate, Oswestry Disability Index (ODI), Japanese Orthopedic Association (JOA) score, and visual analogue scale (VAS) pain score were measured. Patient baseline and 1-year follow-up data were collected and analyzed. The bone resorption rate of the L4 and L5 spinous processes was calculated.
Twenty four males and 20 females with a mean age of 42.7 ± 14.7 years were included. Twenty nine patients had significant bone resorption (bone resorption rate > 20%) and 15 had no bone resorption (bone resorption rate ≤ 20%) at 1 year after surgery. Lumbar lordosis ≥ 50° was associated with a lower bone resorption than lumbar lordosis < 50° and increasing BMI was associated with increased bone resorption. There were no significant differences between the bone resorption and no bone resorption groups in the improvement rate of VAS pain score, ODI, and JOA score at 1 year after surgery.
Significant bone resorption occurs within 1 year after implantation of the Wallis device in more than 50% of patients. However, it does not affect short-term functional results.
PMCID: PMC4481072  PMID: 25971589
Bone resorption; Risk factor; Interspinous dynamic stabilization device; Wallis
21.  The Association between Serum Uric Acid Levels and the Prevalence of Vulnerable Atherosclerotic Carotid Plaque: A Cross-sectional Study 
Scientific Reports  2015;5:10003.
Little is known about the associations between serum uric acid (SUA) levels and atherosclerotic carotid plaque vulnerability. The aim of this study was to assess the associations of SUA levels with the prevalence of vulnerable atherosclerotic carotid plaque in a community-based cohort. In the Asymptomatic Polyvascular Abnormalities Community (APAC) study, cross-sectional data from 2860 Chinese residents who underwent SUA measurement and ultrasonographic assessment of carotid plaque were analyzed. Multivariable logistic regression models were used to assess the associations of SUA levels with presence of vulnerable carotid plaque. After adjustment for potential confounders, SUA levels were significantly associated with the prevalence of vulnerable plaque amongst the middle-aged adults (odds ratio [OR] = 1.19, 95% confidence interval [CI]: 1.11–1.28). Compared to the lowest quartile, quartiles 2, 3 and 4 had a prevalence OR of 1.33 (1.02–1.74), 1.70 (1.27–2.27) and 2.05 (1.53–2.75), respectively, for the presence of vulnerable carotid plaque (p for trend across quartiles < 0.001). In the APAC study, elevated SUA levels were independently associated with the prevalence of vulnerable carotid plaque in middle-aged adults.
PMCID: PMC4426733  PMID: 25961501
22.  The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential 
Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.
PMCID: PMC4442295  PMID: 26078822
23.  Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice 
Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.
PMCID: PMC4442299  PMID: 26078817
24.  Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis 
Circulation research  2014;114(10):1576-1584.
The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques.
To assess the role of macrophage mTORC1 in atherogenesis.
Methods and Results
We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3.
The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences.
PMCID: PMC4058053  PMID: 24687132
Atherosclerosis; mTORC1; chemokine; macrophage
25.  The Neuroprotective Effects of Ratanasampil on Oxidative Stress-Mediated Neuronal Damage in Human Neuronal SH-SY5Y Cells 
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2′-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
PMCID: PMC4433697  PMID: 26064424

Results 1-25 (252)