Search tips
Search criteria

Results 1-25 (40)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  The Alternative Medicine Pawpaw and Its Acetogenin Constituents Suppress Tumor Angiogenesis via the HIF-1/VEGF Pathway 
Journal of natural products  2010;73(5):956-961.
Products that contain twig extracts of pawpaw (Asimina triloba, Annonaceae) are widely consumed anticancer alternative medicines. Pawpaw crude extract (CE) and purified acetogenins inhibited hypoxia-inducible factor-1 (HIF-1)-mediated hypoxic signaling pathways in tumor cells. In T47D cells, pawpaw CE and the acetogenins 10-hydroxyglaucanetin (1), annonacin (2), and annonacin A (3) inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.02 μg/mL, 12 nM, 13 nM, and 31 nM, respectively. This inhibition correlates with the suppression of the hypoxic induction of HIF-1 target genes VEGF and GLUT-1. The induction of secreted VEGF protein represents a key event in hypoxia-induced tumor angiogenesis. Both the extract and the purified acetogenins blocked the angiogenesis-stimulating activity of hypoxic T47D cells in vitro. Pawpaw extract and acetogenins inhibited HIF-1 activation by blocking the hypoxic induction of nuclear HIF-1α protein. The inhibition of HIF-1 activation was associated with the suppression of mitochondrial respiration at complex I. Thus, the inhibition of HIF-1 activation and hypoxic tumor angiogenesis constitutes a novel mechanism of action for these anticancer alternative medicines.
PMCID: PMC2890309  PMID: 20423107
2.  The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration 
Journal of natural products  2009;72(12):2104-2109.
The transcription factor hypoxia-inducible factor-1 (HIF-1) represents an important molecular target for anticancer drug discovery. In a T47D cell-based reporter assay, the Caulerpa spp. algal pigment caulerpin (1) inhibited hypoxia-induced as well as 1,10-phenanthroline-induced HIF-1 activation. The angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF-1. Caulerpin (10 μM) suppressed hypoxic induction of secreted VEGF protein and the ability of hypoxic T47D cell-conditioned media to promote tumor angiogenesis in vitro. Under hypoxic conditions, 1 (10 μM) blocked the induction of HIF-1α protein, the oxygen-regulated subunit that controls HIF-1 activity. Reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. Further mechanistic studies revealed that 1 inhibits mitochondrial respiration at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Under hypoxic conditions, it is proposed that 1 may disrupt mitochondrial ROS-regulated HIF-1 activation and HIF-1 downstream target gene expression by inhibiting the transport or delivery of electrons to complex III.
PMCID: PMC2798910  PMID: 19921787
3.  Lipophilic 2,5-Disubstituted Pyrroles from the Marine Sponge Mycale sp. Inhibit Mitochondrial Respiration and HIF-1 Activation 
Journal of natural products  2009;72(11):1927-1936.
The lipid extract of the marine sponge Mycale sp. inhibited the activation of hypoxiainducible factor-1 (HIF-1) in a human breast tumor T47D cell-based reporter assay. Bioassay-guided isolation and structure elucidation yielded 18 new lipophilic 2,5-disubstituted pyrroles, and eight structurally related known compounds. The active compounds inhibited hypoxia-induced HIF activation with moderate potency (IC50 values < 10 μM). Mechanistic studies revealed that the active compounds suppressed mitochondrial respiration by blocking NADH-ubiquinone oxidoreductase (complex I) at concentrations that inhibited HIF-1 activation. Under hypoxic conditions, reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. By inhibiting electron transport (or delivery) to complex III under hypoxic conditions, lipophilic Mycale pyrroles appear to disrupt mitochondrial ROS-regulated HIF-1 signaling.
PMCID: PMC2868385  PMID: 19845338
4.  Molecular-Targeted Antitumor Agents 15: Neolamellarins from the Marine Sponge Dendrilla nigra Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation and Secreted Vascular Endothelial Growth Factor (VEGF) Production in Breast Tumor Cells 
Journal of natural products  2007;70(11):1741-1745.
The transcription factor Hypoxia-Inducible Factor 1 (HIF-1) has emerged as a major antitumor molecular target. Inhibition of HIF-1 activation has been shown to suppress the growth, survival, and metastatic spread of hypoxic tumors. The NCI Open Repository of marine invertebrates and algae lipid extracts was evaluated for HIF-1 inhibitory activity in a T47D human breast tumor cell-based reporter assay. Bioassay-guided chromatographic separation of the active extract from the sponge Dendrilla nigra produced four new lamellarin-like phenolic pyrroles, which most closely resemble the structure of the known D. cactos compound lamellarin O. However, unlike lamellarins, the structures of neolamellarin A (1), neolamellarin B (2), 5-hydroxyneolamellarin B (3), and 7-hydroxyneolamellarin A (4) lack the carboxyl moiety at position C-2 of the substituted pyrrole ring and have a significantly different pattern of oxidation. Compound 4 was found to inhibit hypoxia-induced HIF-1 activation (IC50 1.9 μM) in T47D cells. Hypoxic induction of vascular endothelial growth factor (VEGF), a potent angiogenic factor and HIF-1 target gene, was also inhibited by 4 at the secreted protein level.
PMCID: PMC2914556  PMID: 17958397
5.  Hypoxia-Selective Antitumor Agents: Norsesterterpene Peroxides from the Marine Sponge Diacarnus levii Preferentially Suppress the Growth of Tumor Cells under Hypoxic Conditions 
Journal of natural products  2007;70(1):130-133.
As part of an ongoing research program to discover natural products that suppress the hypoxia-activated tumor survival pathways, the lipid extract of the Papua New Guinea marine sponge Diacarnus levii was found to suppress hypoxia-induced HIF-1 activation and hypoxic tumor cell survival. Bioassay-guided isolation of D. levii yielded four new norsesterterpene peroxides, diacarnoxides A – D. Diacarnoxide B exhibits a significantly enhanced ability to suppress the growth of tumor cells under hypoxic conditions.
PMCID: PMC2910712  PMID: 17253866
6.  Laurenditerpenol, a New Diterpene from the Tropical Marine Alga Laurencia intricata Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells 
Journal of natural products  2004;67(12):2002-2007.
The degree of tumor hypoxia correlates with advanced disease stages and treatment resistance. The transcription factor hypoxia-inducible factor-1 (HIF-1) promotes tumor cell adaptation and survival under hypoxic conditions. Therefore, specific HIF-1 inhibitors represent an important new class of potential tumor-selective therapeutic agents. A T47D human breast tumor cell-based reporter assay was used to examine extracts of plants and marine organisms for inhibitors of HIF-1 activation. Bioassay-guided fractionation of the lipid extract of the red alga Laurencia intricata yielded a structurally novel diterpene laurenditerpenol (1). The structure of 1 was determined spectroscopically. The relative configurations of the substituents of each ring system were assigned based on NOESY correlations. The absolute configurations of positions C-1 was determined by the modified Mosher ester procedure (directly in NMR tubes). Compound 1 potently inhibited hypoxia-activated HIF-1 (IC50: 0.4 μM) and hypoxia-induced VEGF (a potent angiogenic factor) in T47D cells. Compound 1 selectively inhibits HIF-1 activation by hypoxia but not iron chelator induced activation. Further, 1 suppresses tumor cell survival under hypoxic conditions without affecting normoxic cell growth. Compound 1 inhibits HIF-1 by blocking the induction of the oxygen-regulated HIF-1α protein. Mitochondrial respiration studies revealed that 1 suppresses oxygen consumption.
PMCID: PMC2910713  PMID: 15620241
7.  Benzochromenones from the Marine Crinoid Comantheria rotula Inhibit Hypoxia-Inducible Factor-1 (HIF-1) in Cell-Based Reporter Assays and Differentially Suppress the Growth of Certain Tumor Cell Lines 
Journal of natural products  2007;70(9):1462-1466.
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that promotes tumor cell adaptation and survival under hypoxic conditions. HIF-1 is currently recognized as an important molecular target for anti-cancer drug discovery. The NCI Open Repository of marine invertebrates and algae lipid extracts was evaluated using a T47D breast tumor cell-based reporter assay for HIF-1 inhibitory activity. Bioassay-guided fractionation of an active extract from a crinoid Comantheria rotula yielded seven benzo[g]chromen-4-one and benzo[h]chromen-4-one pigments (1–7). The structures of the new benzo[g]chromenone dimer 9,9'-oxybis-neocomantherin (1) and another new natural pigment 5 were deduced from spectroscopic and spectrometric data. The crinoid pigments significantly inhibited both hypoxia-induced and iron chelator-induced HIF-1 luciferase reporter activity in breast and prostate tumor cells. However, inhibition of HIF-1 in the reporter assay did not translate into a significant decrease in expression of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF). Compound 1 was found to inhibit tumor cell growth in the NCI 60-cell line panel (GI50 values 1.6 to 18.2 μM) and 6 produced a unique pattern of tumor cell growth suppression. Five cell lines from different organs were hypersensitive to 6 (GI50 values 0.29 to 0.62 μM) and three others were moderately sensitive (GI50 values 2.2 to 5.1 μM), while the GI50 values for most other cell lines ranged from 20 to 47 μM. Crinoid benzo[g]chromenones were also found to scavenge radicals in a modified DPPH assay.
PMCID: PMC2910718  PMID: 17844994
8.  Sodwanone and Yardenone Triterpenes from a South African Species of the Marine Sponge Axinella Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation in both Breast and Prostate Tumor Cells 
Journal of natural products  2006;69(12):1715-1720.
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that promotes tumor cell adaptation and survival under hypoxic conditions. HIF-1 is currently recognized as an important molecular target for anti-cancer drug discovery. A T47D breast tumor cell-based reporter assay was used to evaluate the NCI Open Repository of marine invertebrates and algae lipid extracts for HIF-1 inhibitory activity. Bioassay-guided fractionation and isolation of an active extract from Axinella sp. yielded seven new sodwanone triterpenoids [3-epi-sodwanone K (1), 3-epi-sodwanone K 3-acetate (2), 10,11-dihydrosodwanone B (4), sodwanones T–W (3, 7, 8, 9), the new yardenone triterpene 12R-hydroxyyardenone (10), and the previously reported compounds sodwanone A (5), sodwanone B (6), and yardenone (11). The structures and relative configurations of these Axinella metabolites were determined spectroscopically. The absolute configuration of 1 was determined by the modified Mosher ester procedure. Sodwanone V (8) inhibited both hypoxia-induced and iron chelator (1,10-phenanthroline)-induced HIF-1 activation in T47D breast tumor cells (IC50 15 μM) and 8 was the only sodwanone that inhibited HIF-1 activation in PC-3 prostate tumor cells (IC50 15 μM). Compounds 1, 3, 4, and 5 inhibited hypoxia-induced HIF-1 activation in T47D cells (IC50 values 20-25 μM). Compound 2 was cytotoxic to T47D cells (IC50 22 μM) and 8 showed cytotoxicity to MDA-MB-231 breast tumor cells (IC50 23 μM).
PMCID: PMC2908379  PMID: 17190448
9.  The Terpenoid Tetrahydroisoquinoline Alkaloids Emetine, Klugine, and Isocephaeline Inhibit the Activation of Hypoxia-Inducible Factor-1 (HIF-1) in Breast Tumor Cells 
Journal of natural products  2005;68(6):947-950.
Klugine (1), isocephaeline (2), and emetine (4) inhibited hypoxia-inducible factor-1 (HIF-1) activation by hypoxia in T47D breast tumor cells (IC50 values 0.2, 1.1, and 0.11 µM, respectively). Compounds 1, 2, and 4 inhibited both hypoxia- and iron chelator-induced HIF-1 activation by blocking HIF-1α protein accumulation.
PMCID: PMC2907142  PMID: 15974627
10.  Natural Product-Derived Small Molecule Activators of Hypoxia-Inducible Factor-1 (HIF-1) 
Current pharmaceutical design  2006;12(21):2673-2688.
Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1α and a constitutively expressed HIF-1β subunit. In general, the availability and activity of the HIF-1α subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders.
The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through pharmacological evaluation of specifically selected individual compounds. The combination of natural products chemistry with appropriate high-throughput screening bioassays could provide an alternative approach to discover novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.
PMCID: PMC2907550  PMID: 16842166
HIF-1; Natural Product; Tissue Ischemia; Therapeutic Angiogenesis; Molecular-Target; Small Molecule Activator; Chemoprevention; Ischemia/Reperfusion Injury
11.  Natural Product-Based Inhibitors of Hypoxia-Inducible Factor-1 (HIF-1) 
Current drug targets  2006;7(3):355-369.
The transcription factor hypoxia-inducible factor-1 (HIF-1) regulates the expression of more than 70 genes involved in cellular adaptation and survival under hypoxic stress. Activation of HIF-1 is associated with numerous physiological and pathological processes that include tumorigenesis, vascular remodeling, inflammation, and hypoxia/ischemia-related tissue damage. Clinical studies suggested that HIF-1 activation correlates directly with advanced disease stages and treatment resistance among cancer patients. Preclinical studies support the inhibition of HIF-1 as a major molecular target for antitumor drug discovery. Considerable effort is underway, in government laboratories, industry and academia, to identify therapeutically useful small molecule HIF-1 inhibitors. Natural products (low molecular weight organic compounds produced by plants, microbes, and animals) continue to play a major role in modern antitumor drug discovery. Most of the compounds discovered to inhibit HIF-1 are natural products or synthetic compounds with structures that are based on natural product leads. Natural products have also served a vital role as molecular probes to elucidate the pathways that regulate HIF-1 activity. Natural products and natural product-derived compounds that inhibit HIF-1 are summarized in light of their biological source, chemical class, ancd effect on HIF-1 and HIF-mediated gene regulation. When known, the mechanism(s) of action of HIF-1 inhibitors are described. Many of the substances found to inhibit HIF-1 are non-druggable compounds that are too cytotoxic to serve as drug leads. The application of high-throughput screening methods, complementary molecular-targeted assays, and structurally diverse chemical libraries hold promise for the discovery of therapeutically useful HIF-1 inhibitors.
PMCID: PMC2908043  PMID: 16515532
HIF-1; Natural Product; Tumor Hypoxia; Molecular-Targeted Drug Discovery; Small Molecule HIF-1 Inhibitor; Hypoxia Selective
12.  Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration 
Scientific Reports  2015;5:15356.
The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes.
PMCID: PMC4611873  PMID: 26481857
13.  Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion 
Scientific Reports  2015;5:12079.
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD.
PMCID: PMC4502604  PMID: 26174710
14.  Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells 
Marine Drugs  2015;13(3):1552-1568.
The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells.
PMCID: PMC4377999  PMID: 25803180
kalkitoxin; breast cancer; Moorea producens; mitochondria toxin; VEGF; angiogenesis inhibitor; hypoxia-inducible factor-1; HIF-1; Lyngbya majuscula
15.  Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential 
Journal of natural products  2013;77(1):111-117.
Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.
PMCID: PMC3932489  PMID: 24328138
16.  Structures and Potential Antitumor Activity of Sesterterpenes from the Marine Sponge Hyrtios communis (Carter, 1885) 
Journal of natural products  2013;76(8):10.1021/np400350k.
The extract of marine sponge Hyrtios communis (Carter, 1885) (Order Dictyoceratida, Family Thorectidae) was found to inhibit activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) in T47D human breast tumor cells. Bioassay-guided isolation led to the identification of six new (1–6) and five previously reported (7–11) sesterterpene analogues and two unrelated sesterterpenes. Two new sesterterpenes, thorectidaeolide A (1) and 4-acetoxythorectidaeolide A (2), and luffariellolide (11) were among the most potent inhibitors of hypoxia (1% O2)-induced HIF-1 activation (IC50 values 3.2, 3.5, and 3.6 μM, respectively). Luffariellolide (11) exhibited a significant level of cytotoxicity that mirrored its HIF-1 inhibitory activity. Neither 1, nor 2, or any of the other less active sesterterpenes suppressed breast tumor T47D or MDA-MB-231 cell viability.
PMCID: PMC3809078  PMID: 23944963
17.  Inducers of Hypoxic Response: Marine Sesquiterpene Quinones Activate HIF-1 
Journal of natural products  2013;76(6):1175-1181.
The hypoxia-inducible factor-1 (HIF-1) transcription factor regulates cellular oxygen homeostasis. Agents that activate HIF-1 and downstream HIF targets represent potential drug leads for the prevention and/or treatment of ischemic disorders. In a search for small-molecule HIF-1 activators, 1936 marine invertebrate and algal extract samples (U.S. National Cancer Institute’s Open Repository) were evaluated for HIF-1 activation activity in a cell-based reporter assay. Bioassay-guided fractionation of two active extracts of the sponge Dactylospongia elegans afforded four new sesquiterpene quinones (2–5), one new sesquiterpene phenol (6), the known Golgi disruptor ilimaquinone (1), and three previously reported ilimaquinone analogues (7–9). While antiproliferative activity was observed at higher concentrations, the sesquiterpene quinones (1–3) possessing a 2-hydroxy-5-methoxy-1,4-benzoquinone moiety activated HIF-1 and increased the expression of HIF-1 target gene vascular endothelial growth factor (VEGF) in T47D cells.
PMCID: PMC3718637  PMID: 23731014
18.  Comparative Study of Chromatographic Medium-Associated Mass and Potential Antitumor Activity Loss with Bioactive Extracts 
Journal of natural products  2013;76(4):642-647.
Natural product drug discovery programs often rely on the use of silica (Si) gel, reversed- phase media, or size-exclusion resins (e.g., RP-C18, Sephadex LH-20) for compound purification. The synthetic polymer-based sorbent Diaion™ HP20SS (cross-linked polystyrene matrix) is used as an alternative to prepare purified natural product libraries. To evaluate the impact of chromatographic media on the isolation of biologically active, yet chromatographically unstable natural products, Diaion HP20SS was evaluated side-by-side with normal-phase sorbents for irreversible binding of extract constituents and their effects on bioactivity. An array of chemically diverse natural product-rich extracts was selected as a test panel and a cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) was employed to monitor potential change(s) in bioactivity. Silica gel caused significant irreversible binding of three out of ten extracts. Curcuma longa, Saururus cernuus and Citrus reticulata extracts showed decreased HIF-1 inhibitory activity after elution through Si gel. An additional non-polar column wash of HP20SS with EtOAc retained considerable bioactivities of active extracts. In general, Si gel produced the greatest loss of bioactivity. However, HP20SS elution reduced significantly HIF-1 inhibitory activity of certain extracts (e.g., Asimina triloba).
PMCID: PMC3683388  PMID: 23441686
19.  Semisynthetic Studies Identify Mitochondria Poisons from Botanical Dietary Supplements – Geranyloxycoumarins from Aegle marmelos 
Bioorganic & medicinal chemistry  2013;21(7):1795-1803.
Bioassay-guided isolation and subsequent structure elucidation of a Bael tree Aegle marmelos lipid extract yielded two unstable acylated geranyloxycoumarin mixtures (1–2), six geranyloxycoumarins (3–8), (+)-9′-isovaleroxylariciresinol (9), and dehydromarmeline (10). In a T47D cell-based reporter assay, 1 and 2 potently inhibited hypoxia-induced HIF-1 activation (IC50 values 0.18 and 1.10 μg mL−1, respectively). Insufficient material and chemical instability prevented full delineation of the fatty acyl side chain olefin substitution patterns in 1 and 2. Therefore, five fatty acyl geranyloxycoumarin ester derivatives (11–15) were prepared from marmin (3) and commercial fatty acyl chlorides by semisynthesis. The unsaturated C-6′ linoleic acid ester derivative 14 that was structurally most similar to 1 and 2, inhibited HIF-1 activation with comparable potency (IC50 0.92 μM). The octanoyl (11) and undecanoyl (12) ester derivatives also suppressed HIF-1 activation (IC50 values 3.1 and 0.87 μM, respectively). Mechanistic studies revealed that these geranyloxycoumarin derivatives disrupt mitochondrial respiration, primarily at complex I. Thus, these compounds may inhibit HIF-1 activation by suppressing mitochondria-mediated hypoxic signaling. One surprising observation was that, while less potent, the purported cancer chemopreventive agent auraptene (8) was found to act as a mitochondrial poison that disrupts HIF-1 signaling in tumors.
PMCID: PMC3602229  PMID: 23434131
Botanical Dietary Supplements; Mitochondrial Poisons; Geranyloxycoumarin; Auraptene; Hypoxia-Inducible Factor-1 (HIF-1)
20.  Glycolysis Inhibitor Screening Identifies the Bis-geranylacylphloroglucinol Protonophore Moronone from Moronobea coccinea 
Journal of natural products  2012;75(12):2216-2222.
Tumor cells exhibit enhanced glucose consumption and lactate production even when supplied with adequate oxygen (a phenomenon known as the Warburg effect, or aerobic glycolysis). Pharmacological inhibition of aerobic glycolysis represents a potential tumor-selective approach that targets the metabolic differences between normal and malignant tissues. Human breast tumor MDA-MB-231 cells were used to develop an assay system to discover natural product-based glycolysis inhibitors. The assay employed was based on hypersensitivity to glycolytic inhibition in tumor cells treated with the mitochondrial electron transport inhibitor rotenone. Under such conditions, ATP supply, and hence cell viability, depends exclusively on glycolysis. This assay system was used to evaluate 10,648 plant and marine organism extracts from the U.S. National Cancer Institute's Open Repository. Bioassay-guided isolation of an active Moronobea coccinea extract yielded the new bis-geranylacylphloroglucinol derivative moronone (1). Compound 1 exhibited enhanced antiproliferative/cytotoxic activity in the presence of rotenone-imposed metabolic stress on tumor cells. Surprisingly, mechanistic studies revealed that 1 did not inhibit glycolysis, but rather functions as a protonophore that dissipates the mitochondrial proton gradient. In the presence of rotenone, tumor cells may be hypersensitive to protonophores due to increased ATP utilization by the ATP synthase.
PMCID: PMC3532528  PMID: 23245650
21.  Structures and Mechanisms of Antitumor Agents - Xestoquinones Uncouple Cellular Respiration and Disrupt HIF Signaling in Human Breast Tumor Cells 
Journal of natural products  2012;75(9):1553-1559.
The organic extract of a marine sponge Petrosia alfiani selectively inhibited iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in a human breast tumor T47D cell-based reporter assay. Bioassay-guided fractionation yielded seven xestoquinones (1 – 7) including three new compounds 14-hydroxymethylxestoquinone (1), 15-hydroxymethylxestoquinone (2), and 14,15-dihydroxestoquinone (3). Compounds 1 – 7 were evaluated for their effects on HIF-1 signaling, mitochondrial respiration, and tumor cell proliferation/viability. The known metabolites adociaquinones A (5) and B (6), that possess a 3,4-dihydro-2H-1,4-thiazine-1,1-dioxide moiety, potently and selectively inhibited iron chelator-induced HIF-1 activation in T47D cells, each with an IC50 value of 0.2 μM. Mechanistic studies revealed that adociaquinones promote oxygen consumption without affecting mitochondrial membrane potential. Compound 1 both enhances respiration and decreases mitochondrial membrane potential, suggesting that it acts as a protonophore that uncouples mitochondrial respiration.
PMCID: PMC3482980  PMID: 22938093
22.  Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice 
Science (New York, N.Y.)  2011;334(6059):1133-1137.
Evolutionarily old and conserved homeostatic systems in the brain, including hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by micro-transplanting small numbers of embryonic enhanced green fluorescent protein-expressing leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.
PMCID: PMC3770458  PMID: 22116886
23.  Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2 
Journal of natural products  2011;74(9):1894-1901.
Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods.
PMCID: PMC3179826  PMID: 21875114
24.  Epilepsy gene LGI1 regulates postnatal developmental remodeling of retinogeniculate synapses 
The Journal of Neuroscience  2012;32(3):903-910.
Retinogeniculate connections undergo postnatal refinement in the developing visual system. Here we report that non-ion channel epilepsy gene LGI1, mutated in human autosomal dominant lateral temporal lobe epilepsy (ADLTE), regulates postnatal pruning of retinal axons in visual relay thalamus. By introducing an ADLTE-associated truncated mutant LGI1 (836delC) or excess full-length LGI1 into transgenic mice, we found that mutant LGI1 blocks, while excess LGI1 accelerates retinogeniculate axon pruning. The normal postnatal single fiber strengthening was arrested by mutant LGI1, and contrastingly, was enhanced by excess wild-type LGI1. The maximum response of the retinogeniculate synapses, on the other hand, remained the same in mature LGI1 transgenic mice, indicating that mutant LGI1 blocks, whereas excess wild-type LGI1 promotes, weak axon fiber elimination. Heterozygous deletion of the LGI1 gene, as found in ADLTE patients, inhibited postnatal retinogeniculate synapse elimination, an effect similar to the ADLTE truncated mutant LGI1. The results identify sensory axon remodeling defects in a sensory aura-associated human epilepsy disorder.
PMCID: PMC3342858  PMID: 22262888
25.  Thyrsiferol Inhibits Mitochondrial Respiration and HIF-1 Activation 
Phytochemistry letters  2011;4(2):75-78.
The cytotoxic marine red algal metabolite thyrsiferol (1) was found to inhibit hypoxia-induced hypoxia-inducible factor-1 (HIF-1) activation in T47D human breast tumor cells (66% inhibition at 3 μM). Compound 1 also suppressed hypoxic induction of HIF-1 target genes (VEGF, GLUT-1) at the mRNA level, and displayed tumor cell line-selective time-dependent inhibition of cell viability/proliferation. Mechanistic studies revealed that 1 selectively suppressed mitochondrial respiration at Complex I (IC50 3 μM). Thyrsiferol represents a prototypical, structurally unique electron transport chain inhibitor. The apparent rotenone-like activity may contribute to the observed cytotoxicity of 1 and play an important role in Laurencia chemical defense.
PMCID: PMC3139250  PMID: 21785662
Thyrsiferol; Hypoxia-inducible factor-1 (HIF-1); Laurencia, Triterpene polyether; Marine natural product; Mitochondrial complex I inhibitor; NADH-ubiquinone oxidoreductase

Results 1-25 (40)